贝叶斯决策

简介:

贝叶斯决策

  • 简单例子引入
  • 先验概率
  • 后验概率
  • 最小错误率决策
  • 最小风险贝叶斯决策

 

 

 

 

 

 

简单的例子

  正常情况下,我们可以快速的将街上的人分成男和女两类。这里街上的人就是我们观测到的样本,将每一个人分成男、女两类就是我们做决策的过程。上面的问题就是一个分类问题。

  分类可以看作是一种决策,即我们根据观测对样本做出应归属哪一类的决策。

  假定我手里握着一枚硬币,让你猜是多少钱的硬币,这其实就可以看作一个分类决策的问题:你需要从各种可能的硬币中做出一个决策。硬币假设面值有1角、5角、1块。

  如果事先告知这枚硬币只可能是一角或者五角,那么问题就是一个两分类问题。

 

 

 

 

先验概率

      

 

 

 

 

 

 

 


最小错误率

        

 

 

 

 

 

后验概率

 

 

 

 

 

 

 

决策

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 最小错误率决策

 

 

 

 

 

 

 

 

 

最小风险贝叶斯决策

 

 

 

 

 

 

 

 

 

 

 

最小风险决策

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 贝叶斯决策理论的分类方法

 

 

 

 

 

 

 

 

总结

              

 

 

 

 

 

 

 

 

Bayes.java

复制代码
package byas;

import com.google.common.collect.Lists;
import com.google.common.collect.Sets;
import org.apache.commons.math3.linear.MatrixUtils;
import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.linear.RealVector;
import org.lionsoul.jcseg.ASegment;
import org.lionsoul.jcseg.core.*;

import java.io.IOException;
import java.util.ArrayList;
import java.util.HashSet;

import static org.apache.commons.math3.util.FastMath.log;


public class Bayes {
    //创建JcsegTaskConfig分词任务实例
    //即从jcseg.properties配置文件中初始化的配置
    public static JcsegTaskConfig config = new JcsegTaskConfig();
    public static ADictionary dic = DictionaryFactory
            .createDefaultDictionary(config);

    //生成数据
    public static Object[] createdata() throws IOException {
        ArrayList<ArrayList<String>> retList = Lists.newArrayList();
        ArrayList<Integer> labels = Lists.newArrayList();
        ASegment seg = null;
        try {
            seg = (ASegment) SegmentFactory
                    .createJcseg(JcsegTaskConfig.SIMPLE_MODE,
                            new Object[]{config, dic});
        } catch (JcsegException e) {
            e.printStackTrace();
        }

        /*IWord word;
        while ( (word = seg.next()) != null ) {
            System.out.println(word.getValue());
        }
        /*String title = article.getTitle();
        String content = article.getContent();

        List<Term> termList = new ArrayList<Term>();
        List<String> wordList = new ArrayList<String>();
        Map<String,Set<String>> words = new HashMap<String, Set<String>>();
        Queue<String> que = new LinkedList<String>();
        try {
            if(seg!=null){
                seg.reset(new StringReader(title + content));
                IWord word;
                while ( (word = seg.next()) != null ) {
                    if(shouldInclude(word.getValue())){
                        wordList.add(word.getValue());
                    }
                }
            }

        } catch (IOException e) {
            e.printStackTrace();
        }*/

        /*retList.add(Lists.newArrayList("my", "dog", "has", "flea", "problems", "help", "please"));
        retList.add(Lists.newArrayList("maybe", "not", "take", "him", "to", "dog", "park", "stupid"));
        retList.add(Lists.newArrayList("my", "dalmation", "is", "so", "cute", "I", "love", "him"));
        retList.add(Lists.newArrayList("stop", "posting", "stupid", "worthless", "garbage"));
        retList.add(Lists.newArrayList("mr", "licks", "ate", "my", "steak", "how", "to", "stop", "him"));
        retList.add(Lists.newArrayList("quit", "buying", "worthless", "dog", "food", "stupid"));
        ArrayList<Integer> labels = Lists.newArrayList(0,1,0,1,0,1);*/
        return new Object[]{retList,labels};
    }


    //获取单词set
    public static ArrayList<String> createVocabSet(ArrayList<ArrayList<String>> lists){
        HashSet<String> retSet = Sets.newHashSet();
        for(ArrayList<String> list : lists){
            for(String str : list){
                retSet.add(str);
            }
        }

        return Lists.newArrayList(retSet);
    }

    //计算set中包含的单词数量
    public static double[] bagOfWords2VecMN(ArrayList<String> set,ArrayList<String> inputData){
        double[] returnVec = new double[set.size()];
        for (int i = 0; i < inputData.size(); i++) {
            if(set.contains(inputData.get(i))){
                returnVec[set.indexOf(inputData.get(i))]++;
            }
        }
        return returnVec;
    }

    //训练
    public static Object[] trainNB(RealMatrix realMatrix,ArrayList<Integer> labels){

        int numTrainDocs = realMatrix.getRowDimension();
        int numWords = realMatrix.getRow(0).length;
        int count = 0;
        for(int l : labels){
            count += l;
        }

        float pAbusive = (float)count / numTrainDocs;
        //生成单词矩阵
        RealMatrix p0Matrix = MatrixUtils.createRealMatrix(1, numWords);
        p0Matrix = oneNums(p0Matrix);
        RealMatrix p1Matrix = MatrixUtils.createRealMatrix(1,numWords);
        p1Matrix = oneNums(p1Matrix);

        float p0Denom = 2;
        float p1Denom = 2;

        //不同类别单词增加,总单词增加
        for (int i = 0; i < labels.size(); i++) {
            if(labels.get(i)==1){
                p1Matrix = p1Matrix.add(realMatrix.getRowMatrix(i));
                p1Denom += sumMatrix(realMatrix.getRowMatrix(i));
            }else{
                p0Matrix = p0Matrix.add(realMatrix.getRowMatrix(i));
                p0Denom += sumMatrix(realMatrix.getRowMatrix(i));
            }
        }

        //单词概率矩阵
        RealMatrix p0 = logMatrix(p0Matrix.scalarMultiply(1 / p0Denom));
        RealMatrix p1 = logMatrix(p1Matrix.scalarMultiply(1 / p1Denom));
        return new Object[]{p0,p1,pAbusive};
    }


    /**
     * 矩阵填充1
     * @param realMatrix
     * @return
     */
    public static RealMatrix oneNums(RealMatrix realMatrix){
        for(int i=0;i<realMatrix.getColumnDimension();i++){
            realMatrix.setColumn(i,new double[]{1});
        }
        return realMatrix;
    }

    /**
     * 计算矩阵元素和
     * @param realMatrix
     * @return
     */
    public static float sumMatrix(RealMatrix realMatrix){
        float num = 0;
        double[] rows = realMatrix.getRow(0);
        for(double row : rows){
            num += row;
        }
        return num;
    }

    /**
     * 矩阵元素log操作
     * @param realMatrix
     * @return
     */
    public static RealMatrix logMatrix(RealMatrix realMatrix){
        double[] rows = realMatrix.getRow(0);
        double[] newRows = new double[rows.length];
        for (int i = 0; i < rows.length; i++) {
            newRows[i] = log(rows[i]);
        }
        realMatrix.setRow(0,newRows);
        return realMatrix;
    }

    /**
     * 矩阵元素相乘
     * @param m1
     * @param m2
     * @return
     */
    public static RealMatrix multiply(RealMatrix m1,RealMatrix m2){
        RealVector r1 = m1.getRowVector(0);
        RealVector r2 = m2.getRowVector(0);
        RealMatrix m = MatrixUtils.createRealMatrix(m1.getRowDimension(),m1.getColumnDimension());
        m.setRowVector(0,r1.ebeMultiply(r2));

        return m;
    }


    /**
     * 验证方法
     * @param realMatrix
     * @param p0M
     * @param p1M
     * @return
     */
    public static int classify(RealMatrix realMatrix,Object p0M,Object p1M){

        float p0 = (float) (sumMatrix(multiply(realMatrix, (RealMatrix) p0M))+log(1.0-0.5));
        float p1 = (float) (sumMatrix(multiply(realMatrix, (RealMatrix) p1M))+log(0.5));
        if(p0>p1){
            return 0;
        }
        return 1;
    }



    public static void main(String[] args) throws IOException {
        /*Object[] retData = createData();
        ArrayList<String> set = createVocabSet((ArrayList<ArrayList<String>>) retData[0]);
        ArrayList<ArrayList<String>> lists = (ArrayList<ArrayList<String>>) retData[0];
        RealMatrix m = MatrixUtils.createRealMatrix(lists.size(),set.size());
        for (int i = 0; i < lists.size(); i++) {
            m.setRow(i,bagOfWords2VecMN(set,lists.get(i)));
        }

        Object[] retP = trainNB(m, (ArrayList<Integer>) retData[1]);

        ArrayList<String> test = Lists.newArrayList("love");
        RealMatrix m1 = MatrixUtils.createRealMatrix(1,set.size());
        m1.setRow(0,bagOfWords2VecMN(set,test));
        System.out.println(classify(m1,retP[0],retP[1]));*/
        createdata();


    }
}


本文转自大数据躺过的坑博客园博客,原文链接:http://www.cnblogs.com/zlslch/p/6789129.html,如需转载请自行联系原作者
相关文章
|
存储 XML Java
Activiti7(图文并茂)
Activiti7(图文并茂)
|
传感器 JSON 监控
Springboot + oshi 实现对服务器硬件的监控
OSHI是一个免费的基于JNA的(本机)Java操作系统和硬件信息库。它不需要安装任何额外的本地库,旨在提供跨平台实现来检索系统信息,如操作系统版本、进程、内存和CPU使用情况、磁盘和分区、设备、传感器等。
784 0
|
存储 分布式计算 监控
深入浅出 HBase 实战 | 青训营笔记
Hbase是一种NoSQL数据库,这意味着它不像传统的RDBMS数据库那样支持SQL作为查询语言。Hbase是一种分布式存储的数据库,技术上来讲,它更像是分布式存储而不是分布式数据库,它缺少很多RDBMS系统的特性,比如列类型,辅助索引,触发器,和高级查询语言等待。
1090 0
深入浅出 HBase 实战 | 青训营笔记
Object转Map的两种方式
在平时的工作中,有时候需要将Object转换成Map。笔者这里总结了两种将Object转成Map的方式方法。
6658 0
|
监控 Java Linux
开源流程引擎Camunda
开源流程引擎Camunda
|
6月前
|
监控 安全 Java
SpringBoot-开启Admin监控服务
本文介绍如何在SpringBoot项目中开启Admin监控服务。
104 0
|
SQL 运维 关系型数据库
使用Binlog日志恢复误删的MySQL数据
今天文章的主题是如何使用Mysql内置的Binlog日志对误删的数据进行恢复,读完本文,你能够了解到: MySQL的binlog日志是什么?通常是用来干什么的? 模拟一次误删数据的操作,并且使用binlog日志恢复误删的数据。
1383 1
完美解决->“pip : 无法将“pip”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。请检查名称的拼写,如果包括路径,请确保路径正确,然后再试一次。”
完美解决->“pip : 无法将“pip”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。请检查名称的拼写,如果包括路径,请确保路径正确,然后再试一次。”
完美解决->“pip : 无法将“pip”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。请检查名称的拼写,如果包括路径,请确保路径正确,然后再试一次。”
|
JSON Java 数据格式
Java将json中key值下划线转为驼峰格式
Java将json中key值下划线转为驼峰格式
682 1
|
6月前
|
算法 Java Python
用友Java后端笔试2023-8-5
用友Java后端笔试2023-8-5
86 0
用友Java后端笔试2023-8-5