[CareerCup] 18.12 Largest Sum Submatrix 和最大的子矩阵

简介:

18.12 Given an NxN matrix of positive and negative integers, write code to find the submatrix with the largest possible sum.

这道求和最大的子矩阵,跟LeetCode上的Maximum Size Subarray Sum Equals kMaximum Subarray很类似。这道题不建议使用brute force的方法,因为实在是不高效,我们需要借鉴上面LeetCode中的建立累计和矩阵的思路,我们先来看这道题的第一种解法,由于建立好累计和矩阵,那么我们通过给定了矩阵的左上和右下两个顶点的坐标可以在O(1)的时间内快速的求出矩阵和,所以我们要做的就是遍历矩阵中所有的子矩阵,然后比较其矩阵和,返回最大的即可,时间复杂度为O(n4)。

解法一:

vector<vector<int>> precompute(vector<vector<int>> &matrix) {
    vector<vector<int>> sumMatrix = matrix;
    for (int i = 0; i < matrix.size(); ++i) {
        for (int j = 0; j < matrix[i].size(); ++j) {
            if (i == 0 && j == 0) {
                sumMatrix[i][j] = matrix[i][j];
            } else if (j == 0) {
                sumMatrix[i][j] = sumMatrix[i - 1][j] + matrix[i][j];
            } else if (i == 0) {
                sumMatrix[i][j] = sumMatrix[i][j - 1] + matrix[i][j];
            } else {
                sumMatrix[i][j] = sumMatrix[i - 1][j] + sumMatrix[i][j - 1] - sumMatrix[i - 1][j - 1] + matrix[i][j];
            }
        }
    }
    return sumMatrix;
}

int compute_sum(vector<vector<int>> &sumMatrix, int i1, int i2, int j1, int j2) {
    if (i1 == 0 && j1 == 0) {
        return sumMatrix[i2][j2];
    } else if (i1 == 0) {
        return sumMatrix[i2][j2] - sumMatrix[i2][j1 - 1];
    } else if (j1 == 0) {
        return sumMatrix[i2][j2] - sumMatrix[i1 - 1][j2];
    } else {
        return sumMatrix[i2][j2] - sumMatrix[i2][j1 - 1] - sumMatrix[i1 - 1][j2] + sumMatrix[i1 - 1][j1 - 1];
    }
}

int get_max_matrix(vector<vector<int>> &matrix) {
    int res = INT_MIN;
    vector<vector<int>> sumMatrix = precompute(matrix);
    for (int r1 = 0; r1 < matrix.size(); ++r1) {
        for (int r2 = r1; r2 < matrix.size(); ++r2) {
            for (int c1 = 0; c1 < matrix[0].size(); ++c1) {
                for (int c2 = c1; c2 < matrix[0].size(); ++c2) {
                    int sum = compute_sum(sumMatrix, r1, r2, c1, c2);
                    res = max(res, sum); 
                }
            }
        }
    }
    return res;
}

其实这道题的解法还能进一步优化到O(n3),根据LeetCode中的那道Maximum Subarray的解法,我们可以对一维数组求最大子数组的时间复杂度优化到O(n),那么我们可以借鉴其的思路,由于二维数组中遍历所有的列数相等的子矩阵的时间为O(n2),每一行的遍历是O(n),所以整个下来的时间复杂度即为O(n3),参见代码如下:

解法二:

int max_subarray(vector<int> &array) {
    int res = 0, sum = 0;
    for (int i = 0; i < array.size(); ++i) {
        sum += array[i];
        res = max(res, sum);
        sum = max(sum, 0);
    }
    return res;
}

int max_submatrix(vector<vector<int>> &matrix) {
    if (matrix.empty() || matrix[0].empty()) return 0;
    int res = 0;
    for (int r1 = 0; r1 < matrix.size(); ++r1) {
        vector<int> sum(matrix[0].size());
        for (int r2 = r1; r2 < matrix.size(); ++r2) {
            for (int c = 0; c < matrix[0].size(); ++c) {
                sum[c] += matrix[r2][c];
            }
            int t = max_subarray(sum);
            res = max(res, t);
        }
    }
    return res;
}

本文转自博客园Grandyang的博客,原文链接:和最大的子矩阵[CareerCup] 18.12 Largest Sum Submatrix ,如需转载请自行联系原博主。

相关文章
|
缓存 关系型数据库 MySQL
高性能 MySQL(九):通过重构查询语句,来解决慢查询
上一篇我们讲到通到优化数据访问,来解决慢查询问题,这是解决慢查询的基础。但有时我们的查询过于复杂,导致查询速度慢,我们不得不重构查询。今天就来讲下重构查询的几种方式。
364 0
|
19小时前
|
云安全 人工智能 自然语言处理
|
5天前
|
搜索推荐 编译器 Linux
一个可用于企业开发及通用跨平台的Makefile文件
一款适用于企业级开发的通用跨平台Makefile,支持C/C++混合编译、多目标输出(可执行文件、静态/动态库)、Release/Debug版本管理。配置简洁,仅需修改带`MF_CONFIGURE_`前缀的变量,支持脚本化配置与子Makefile管理,具备完善日志、错误提示和跨平台兼容性,附详细文档与示例,便于学习与集成。
310 116
|
8天前
|
数据采集 人工智能 自然语言处理
Meta SAM3开源:让图像分割,听懂你的话
Meta发布并开源SAM 3,首个支持文本或视觉提示的统一图像视频分割模型,可精准分割“红色条纹伞”等开放词汇概念,覆盖400万独特概念,性能达人类水平75%–80%,推动视觉分割新突破。
550 51
Meta SAM3开源:让图像分割,听懂你的话
|
20天前
|
域名解析 人工智能
【实操攻略】手把手教学,免费领取.CN域名
即日起至2025年12月31日,购买万小智AI建站或云·企业官网,每单可免费领1个.CN域名首年!跟我了解领取攻略吧~
|
4天前
|
人工智能 Java API
Java 正式进入 Agentic AI 时代:Spring AI Alibaba 1.1 发布背后的技术演进
Spring AI Alibaba 1.1 正式发布,提供极简方式构建企业级AI智能体。基于ReactAgent核心,支持多智能体协作、上下文工程与生产级管控,助力开发者快速打造可靠、可扩展的智能应用。
|
3天前
|
弹性计算 人工智能 Cloud Native
阿里云无门槛和有门槛优惠券解析:学生券,满减券,补贴券等优惠券领取与使用介绍
为了回馈用户与助力更多用户节省上云成本,阿里云会经常推出各种优惠券相关的活动,包括无门槛优惠券和有门槛优惠券。本文将详细介绍阿里云无门槛优惠券的领取与使用方式,同时也会概述几种常见的有门槛优惠券,帮助用户更好地利用这些优惠,降低云服务的成本。
263 132
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
AgentEvolver:让智能体系统学会「自我进化」
AgentEvolver 是一个自进化智能体系统,通过自我任务生成、经验导航与反思归因三大机制,推动AI从“被动执行”迈向“主动学习”。它显著提升强化学习效率,在更少参数下实现更强性能,助力智能体持续自我迭代。开源地址:https://github.com/modelscope/AgentEvolver
385 29