转载好文:《专题研究一 进程的深入理解与分析》 (早期2.4内核)

简介: 在学习Linux进程内核栈的时候,看到这篇好文,在这里转载下:(注意:数据结构针对的是早期的2.4内核,2.6以后的内核数据结构和处理方法稍有不同,但是基本原理相同) 作者: 曹国辉 南京凌嵌教育嵌入式Linux金牌讲师 专题研究一  进程的深入理解与分析        进程是程序的一次执行过程。
在学习Linux进程内核栈的时候,看到这篇好文,在这里转载下:
(注意:数据结构针对的是早期的2.4内核,2.6以后的内核数据结构和处理方法稍有不同,但是基本原理相同)

作者: 曹国辉 

南京凌嵌教育嵌入式Linux金牌讲师


专题研究一  进程的深入理解与分析

       进程是程序的一次执行过程。用剧本和演出来类比,程序相当于剧本,而进程则相当于剧本的一次演出,舞台、灯光则相当于进程的运行环境。

进程的堆栈

      每个进程都有自己的堆栈,内核在创建一个新的进程时,在创建进程控制块task_struct的同时,也为进程创建自己堆栈。一个进程有2个堆栈:用户堆栈和系统堆栈;用户堆栈的空间指向用户地址空间,内核堆栈的空间指向内核地址空间。当进程在用户态运行时,CPU堆栈指针寄存器指向用户堆栈地址,使用用户堆栈;当进程运行在内核态时,CPU堆栈指针寄存器指向的是内核栈空间地址,使用的是内核栈。

进程用户栈和内核栈之间的切换

       当进程由于中断或系统调用从用户态转换到内核态时,进程所使用的栈也要从用户栈切换到内核栈。系统调用实质就是通过指令产生中断,称为软中断。进程因为中断(软中断或硬件产生中断),使得CPU切换到特权工作模式,此时进程陷入内核态,进程进入内核态后,首先把用户态的堆栈地址保存在内核堆栈中,然后设置堆栈指针寄存器的地址为内核栈地址,这样就完成了用户栈向内核栈的切换。

      当进程从内核态切换到用户态时,最后把保存在内核栈中的用户栈地址恢复到CPU栈指针寄存器即可,这样就完成了内核栈向用户栈的切换。

       这里要理解一下内核堆栈。前面我们讲到,进程从用户态进入内核态时,需要在内核栈中保存用户栈的地址。那么进入内核态时,从哪里获得内核栈的栈指针呢?

      要解决这个问题,先要理解从用户态刚切换到内核态以后,进程的内核栈总是空的。这点很好理解,当进程在用户空间运行时,使用的是用户栈;当进程在内核态运行时,内核栈中保存进程在内核态运行的相关信息,但是当进程完成了内核态的运行,重新回到用户态时,此时内核栈中保存的信息全部恢复,也就是说,进程在内核态中的代码执行完成回到用户态时,内核栈是空的。

     理解了从用户态刚切换到内核态以后,进程的内核栈总是空的,那刚才这个问题就很好理解了,因为内核栈是空的,那当进程从用户态切换到内核态后,把内核栈的栈顶地址设置给CPU的栈指针寄存器就可以了。

      X86 Linux内核栈定义如下(可能现在的版本有所改变,但不妨碍我们对内核栈的理解),在/include/linux/sched.h中定义了如下一个联合结构:

  1. union task_union {
  2.        struct task_struct task;
  3.        unsigned long stack[2408];
  4. };

      从这个结构可以看出,内核栈占8KB的内存区。实际上,进程的task_struct结构所占的内存是由内核动态分配的,更确切地说,内核根本不给task_struct分配内存,而仅仅给内核栈分配8K的内存,并把其中的一部分给task_struct使用。

      这样内核栈的起始地址就是union task_union变量的地址+8K 字节的长度。例如:我们动态分配一个union task_union类型的变量如下:

  1. unsigned char *gtaskkernelstack;
  2. gtaskkernelstack = kmalloc(sizeof(union task_union));

       那么该进程每次进入内核态时,内核栈的起始地址均为:(unsigned char *gtaskkernelstack + 8096 

进程上下文

       进程切换现场称为进程上下文(context),包含了一个进程所具有的全部信息,一般包括:进程控制块(Process Control BlockPCB)、有关程序段和相应的数据集。

 

      进程控制块PCB(任务控制块)

        进程控制块是进程在内存中的静态存在方式,Linux内核中用task_struct表示一个进程(相当于进程的人事档案)。进程的静 态描述必须保证一个进程在获得CPU并重新进入运行态时,能够精确的接着上次运行的位置继续进行,相关的程序段,数据以及CPU现场信息必须保存。处理机 现场信息主要包括处理机内部寄存器和堆栈等基本数据。

进程控制块一般可以分为进程描述信息、进程控制信息,进程相关的资源信息和CPU现场保护机构。 

进程的切换

当一个进程的时间片到时,进程需要让出CPU给其他进程运行,内核需要进行进程切换。

Linux 的进程切换是通过调用函数进程切换函数schedule来实现的。进程切换主要分为2个步骤:

1. 调用switch_mm()函数进行进程页表的切换;

2. 调用 switch_to() 函数进行 CPU寄存器切换;  

__switch_to定义在\arch\arm\kernel目录下的entry-armv.S 文件中,源码如下:

  1. ENTRY(__switch_to)
  2. UNWIND(.fnstart )
  3. UNWIND(.cantunwind )
  4. add ip, r1, #TI_CPU_SAVE
  5. ldr r3, [r2, #TI_TP_VALUE]
  6. stmia ip!, {r4 - sl, fp, sp, lr} @ Store most regs on stack
  7. #ifdef CONFIG_MMU
  8. ldr r6, [r2, #TI_CPU_DOMAIN]
  9. #endif
  10. #if __LINUX_ARM_ARCH__ >= 6
  11. #ifdef CONFIG_CPU_32v6K
  12. clrex
  13. #else
  14. strex r5, r4, [ip] @ Clear exclusive monitor
  15. #endif
  16. #endif
  17. #if defined(CONFIG_HAS_TLS_REG)
  18. mcr p15, 0, r3, c13, c0, 3 @ set TLS register
  19. #elif !defined(CONFIG_TLS_REG_EMUL)
  20. mov r4, #0xffff0fff
  21. str r3, [r4, #-15] @ TLS val at 0xffff0ff0
  22. #endif
  23. #ifdef CONFIG_MMU
  24. mcr p15, 0, r6, c3, c0, 0 @ Set domain register
  25. #endif
  26. mov r5, r0
  27. add r4, r2, #TI_CPU_SAVE
  28. ldr r0, =thread_notify_head
  29. mov r1, #THREAD_NOTIFY_SWITCH
  30. bl atomic_notifier_call_chain
  31. mov r0, r5
  32. ldmia r4, {r4 - sl, fp, sp, pc} @ Load all regs saved previously
  33. UNWIND(.fnend )
  34. ENDPROC(__switch_to)

Switch_to的处理流程如下: 

1. 保存本进程的CPU寄存器(PCR0 ~ R13)到本进程的栈中;

2. 保存SP(本进程的栈基地址)task->thread.save 中;

3. 从新进程的task->thread.save恢复SP为新进程的栈基地址;

4. 从新进程的栈中恢复新进程的CPU相关寄存器值,

5. 新进程开始运行,完成任务切换。 


这里读者可能会问,在进行任务切换的时候,到底是在运行进程1还是运行进程2呢?进程切换的时候,已经进行页表切换,那页表切换之后,切换进程使用的是进程1还是进程2的页表呢? 

要回答这个问题,首先我们要明白由谁来完成进程切换? 

通过对操作系统的理解,毫无疑问,进程切换是由内核来完成的,也就是说,在进行进程切换时,CPU运行在内核模式,使用的是内核空间的内核代码,它既不属于进程1,也不属于进程2,当进程的时间片到时,内核提供服务来完成进程的切换。既不使用进程1的页表,也不使用进程2的页表,使用的内核映射页表。这样我们就很好理解上面的问题了。 

希望这篇文的对大家深入理解进程有所帮助。

相关文章
|
10天前
|
调度 开发者
核心概念解析:进程与线程的对比分析
在操作系统和计算机编程领域,进程和线程是两个基本而核心的概念。它们是程序执行和资源管理的基础,但它们之间存在显著的差异。本文将深入探讨进程与线程的区别,并分析它们在现代软件开发中的应用和重要性。
25 4
|
14天前
|
缓存 算法 Linux
Linux内核的心脏:深入理解进程调度器
本文探讨了Linux操作系统中至关重要的组成部分——进程调度器。通过分析其工作原理、调度算法以及在不同场景下的表现,揭示它是如何高效管理CPU资源,确保系统响应性和公平性的。本文旨在为读者提供一个清晰的视图,了解在多任务环境下,Linux是如何智能地分配处理器时间给各个进程的。
|
29天前
|
运维 JavaScript jenkins
鸿蒙5.0版开发:分析CppCrash(进程崩溃)
在HarmonyOS 5.0中,CppCrash指C/C++运行时崩溃,常见原因包括空指针、数组越界等。系统提供基于posix信号机制的异常检测能力,生成详细日志辅助定位。本文详解CppCrash分析方法,涵盖异常检测、问题定位思路及案例分析。
46 4
|
29天前
|
运维 监控 JavaScript
鸿蒙next版开发:分析JS Crash(进程崩溃)
在HarmonyOS 5.0中,JS Crash指未处理的JavaScript异常导致应用意外退出。本文详细介绍如何分析JS Crash,包括异常捕获、日志分析和典型案例,帮助开发者定位问题、修复错误,提升应用稳定性。通过DevEco Studio收集日志,结合HiChecker工具,有效解决JS Crash问题。
44 4
|
1月前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
69 4
|
1月前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
1月前
|
算法 调度
探索操作系统的心脏:内核与进程管理
【10月更文挑战第25天】在数字世界的复杂迷宫中,操作系统扮演着关键角色,如同人体中的心脏,维持着整个系统的生命力。本文将深入浅出地剖析操作系统的核心组件——内核,以及它如何通过进程管理来协调资源的分配和使用。我们将从内核的概念出发,探讨它在操作系统中的地位和作用,进而深入了解进程管理的机制,包括进程调度、状态转换和同步。此外,文章还将展示一些简单的代码示例,帮助读者更好地理解这些抽象概念。让我们一起跟随这篇文章,揭开操作系统神秘的面纱,理解它如何支撑起我们日常的数字生活。
|
3月前
|
算法 调度 Python
探索操作系统的内核——一个简单的进程调度示例
【9月更文挑战第17天】在这篇文章中,我们将深入探讨操作系统的核心组件之一——进程调度。通过一个简化版的代码示例,我们将了解进程调度的基本概念、目的和实现方式。无论你是初学者还是有一定基础的学习者,这篇文章都将帮助你更好地理解操作系统中进程调度的原理和实践。
|
2月前
|
NoSQL Linux 程序员
进程管理与运行分析
进程管理与运行分析
23 0
|
4月前
|
调度 虚拟化 容器
探索操作系统的心脏:内核与进程管理
【8月更文挑战第28天】在数字世界的复杂迷宫中,操作系统扮演着关键角色。它如同一座桥梁,连接硬件与软件,确保一切顺畅运行。本文将深入剖析操作系统的核心——内核和进程管理,揭示它们如何协同工作,保障系统的稳定与高效。通过简化的比喻,我们将一探究竟,了解操作系统背后的神秘面纱。