来源 [尊重原有作者劳动成果]
2014年武汉大学基础数学复试试题解答
时间:2014年3月22日8:30—10:30
专业:基础数学
一、(10分)已知函数$f(x)$在$(-1,1)$上连续,在除$x=0$上存在导函数
(1)若$\underset{x\to 0}{\mathop{\lim }}\,f(x)$存在,证明存在;
(2)若$\underset{x\to 0}{\mathop{\lim }}\,f(x)$不存在,则$f(0)$一定不存在吗?若不存在,说明理由;若存在,请给出反例并证明。
证明:
(1)由于$f(0)=\underset{x\to 0}{\mathop{\lim }}\,\frac{f(x)-f(0)}{x-0}=\underset{x\to 0}{\mathop{\lim }}\,\frac{f(x)-f(0)}{x}$
而$f(x)$在$(-1,0)\cup (0,1)$上可导
由微分中值定理可知:
存在$\xi $在$0$和$x$之间,使得$f(x)-f(0)=f(\xi )x$
于是\[f(0)=\underset{x\to 0}{\mathop{\lim }}\,f(\xi )\]存在
于是$f(0)$存在
(2)不一定
例如
$f(x)=\left\{\begin{array}{ll} {x^2}\sin \frac{1}{x}, \hbox{$x \ne 0$;} \\ 0, \hbox{$x = 0$.} \end{array} \right.$
显然$f(x)$在$(-1,1)$上连续,且$x\ne 0$时,$f(x)=2x\sin \frac{1}{x}-\cos \frac{1}{x}$
则$\underset{x\to 0}{\mathop{\lim }}\,f(x)$不存在
但$f(x)=\underset{x\to 0}{\mathop{\lim }}\,\frac{f(x)-f(0)}{x-0}=\underset{x\to 0}{\mathop{\lim }}\,x\sin \frac{1}{x}=0$存在
于是不一定不存在
二、(10分)证明:函数$f(x)$在$(a,b)$上一致连续的充要条件是:对任意的$\{{{x}_{n}}\}\subset (a,b)$,只要$\{{{x}_{n}}\}$收敛,则$f({{x}_{n}})$收敛。
证明:
必要性:若函数$f(x)$在$(a,b)$上一致连续
则对任意的$\varepsilon 0$,存在$\delta (\varepsilon )0$,对任意的$x,x\subset (a,b)$,只要$\left| x-x \right|\delta $,则
$\left| f(x)-f(x) \right|\varepsilon $
于是当$\{{{x}_{n}}\}$收敛时,则对任意的$\varepsilon 0$,存在$\delta (\varepsilon )0$,对任意的$x_{n}^{},x_{n}^{}\subset (a,b)$,有
$\left| x_{n}^{}-x_{n}^{} \right|\delta $
于是$\left| f(x_{n}^{})-f(x_{n}^{}) \right|\varepsilon $
由$Cauchy$收敛准则知,$f({{x}_{n}})$收敛
充分性:对任意的$\{{{x}_{n}}\}\subset (a,b)$,只要$\{{{x}_{n}}\}$一致收敛,则$f({{x}_{n}})$收敛
即则对任意的$\varepsilon 0$,存在$\delta (\varepsilon )0$,对任意的$x_{n}^{},x_{n}^{}\subset (a,b)$,只要$\left| x_{n}^{}-x_{n}^{} \right|\delta $,于是
$\left| f(x_{n}^{})-f(x_{n}^{}) \right|\varepsilon $
下证$f(x)$在$(a,b)$上一致收敛
反证:若$f(x)$在$(a,b)$上不一致收敛
则存在${{\varepsilon }_{0}}0$,对任意的$\delta 0$,存在$\left| x-x \right|\delta $时,但有$\left| f(x)-f(x) \right|\ge {{\varepsilon }_{0}}$
取${{\delta }_{1}}=1$,存在$x_{1}^{},x_{1}^{}\in (a,b),\left| x_{1}^{}-x_{1}^{} \right|1$,但$\left| f(x_{1}^{})-f(x_{1}^{}) \right|\ge {{\varepsilon }_{0}}$
取${{\delta }_{2}}=\frac{1}{2}$,存在$x_{2}^{},x_{2}^{}\in (a,b),\left| x_{2}^{}-x_{2}^{} \right|\frac{1}{2}$,但$\left| f(x_{2}^{})-f(x_{2}^{}) \right|\ge {{\varepsilon }_{0}}$
$\cdots \cdots $
取${{\delta }_{n}}=\frac{1}{n}$,存在$x_{n}^{},x_{n}^{}\in (a,b),\left| x_{n}^{}-x_{n}^{} \right|\frac{1}{n}$,但$\left| f(x_{n}^{})-f(x_{n}^{}) \right|\ge {{\varepsilon }_{0}}$
于是存在$\{{{x}_{n}}\}$收敛,但$\{f({{x}_{n}})\}$发散,矛盾
于是$f(x)$在$(a,b)$上一致收敛
三、(10分)设$X$是度量空间,$E$为$X$中的紧子集,$\varphi $是$E$上到自身的映射,
$d(\varphi (x),\varphi (y))d(x,y)(x,y\in E,x\ne y)$ ,求证:$\varphi $在$E$中存在唯一不动点
证明:定义$E$上的函数$f(x)=d(\varphi x,x)$
由于$\left| f(x)-f(y) \right|=\left| d(\varphi x,x)-d(\varphi y,y) \right|\le d(\varphi x,\varphi y)+d(x,y)2d(x,y)$
于是$f$是$E$上的连续映射
由于$E$是度量空间$X$的紧子集
则必有${{x}_{0}}\in E$,使得$f({{x}_{0}})=\underset{x\in E}{\mathop{\min }}\,f(x)$
先证$f({{x}_{0}})=0$
反证:若$f({{x}_{0}})\ne 0\Rightarrow \varphi {{x}_{0}}\ne {{x}_{0}}$
记${{x}_{1}}=\varphi {{x}_{0}}$,则$\varphi {{x}_{1}}={{\varphi }^{2}}{{x}_{0}}$
于是
$f({{x}_{1}})=d(\varphi {{x}_{1}},{{x}_{1}})=d({{\varphi }^{2}}{{x}_{0}},\varphi {{x}_{0}})d(\varphi {{x}_{0}},{{x}_{0}})=f({{x}_{0}})$
这与$f({{x}_{0}})$是$f$的最小值矛盾
于是$d(\varphi {{x}_{0}},{{x}_{0}})=0$
即$\varphi {{x}_{0}}={{x}_{0}}$
唯一性:设${{x}_{2}}$是$\varphi $的另一个不动点,则$d({{x}_{0}},{{x}_{1}})=d(\varphi {{x}_{0}},\varphi {{x}_{1}})d({{x}_{0}},{{x}_{1}})$矛盾
于是$\varphi $在$E$中存在唯一不动点
四、(10分)证明积分$\int_{0}^{\text{+}\infty }{\frac{\sin xy}{x(1+y)}}dy$在$0\delta \le x+\infty $上一致收敛,但在$0x+\infty $上不一致收敛
证明:对任意的$\delta 0$,当$x\in [\delta ,+\infty )$时,有$\left| \int_{0}^{A}{\sin xydy} \right|=\left| \frac{1-\cos Ax}{x} \right|\le \frac{2}{\delta }$
而$\frac{1}{x(1+y)}$关于$y$单调递减且一致收敛于$0$
由$Dirichlet$判别法可知:$\int_{0}^{\text{+}\infty }{\frac{\sin xy}{x(1+y)}}dy$在$0\delta \le x+\infty $上一致收敛
另一方面:
取$A_{n}^{}=n(2n\pi +\frac{\pi }{4}),A_{n}^{}=n(2n\pi +\frac{\pi }{2}),{{x}_{n}}=\frac{1}{n}$,则
$\int_{A_{n}^{}}^{A_{n}^{}}{\frac{\sin {{x}_{n}}y}{{{x}_{n}}(1+y)}}dy=\int_{n(2n\pi +\frac{\pi }{4})}^{n(2n\pi +\frac{\pi }{2})}{\frac{n\sin \frac{y}{n}}{1+y}}dy$
$\ge \int_{n(2n\pi +\frac{\pi }{4})}^{n(2n\pi +\frac{\pi }{2})}{\frac{\sqrt{2}n}{2(1+y)}}dy$
$=\frac{\sqrt{2}}{2}n\ln [1+\frac{n\pi }{4+n(8n\pi +\pi )}]$
.而$\underset{n\to +\infty }{\mathop{\lim }}\,\frac{\sqrt{2}}{2}n\ln [1+\frac{n\pi }{4+n(8n\pi +\pi )}]=\underset{n\to +\infty }{\mathop{\lim }}\,\frac{\sqrt{2}{{n}^{2}}\pi }{8+2n(8n\pi +\pi )}=\frac{\sqrt{2}}{16}0$
则$\int_{A_{n}^{}}^{A_{n}^{}}{\frac{\sin {{x}_{n}}y}{{{x}_{n}}(1+y)}}dy\ge \frac{\sqrt{2}}{16}$
故$\int_{0}^{\text{+}\infty }{\frac{\sin xy}{x(1+y)}}dy$在$(0,+\infty )$上不一致收敛
五、(10分)设$f(x)=\sum\limits_{n=0}^{+\infty }{{{a}_{n}}{{x}^{n}}}(-1x1)$,其中
$\underset{n\to +\infty }{\mathop{\lim }}\,n{{a}_{n}}=0$
$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)=s$.
求证:$\sum\limits_{n=0}^{+\infty }{{{a}_{n}}}$一致收敛且和为$s$
证明:令${{\delta }_{n}}=\frac{\sum\limits_{k=1}^{n}{\left| k{{a}_{k}} \right|}}{n}$,下证
$\underset{n\to +\infty }{\mathop{\lim }}\,{{\delta }_{n}}=0$
由于$\underset{n\to +\infty }{\mathop{\lim }}\,n{{a}_{n}}=0$
则对任意的$\varepsilon 0$,总可以找到一个正整数$N(\varepsilon )$,使得当时,总有$\left| n{{a}_{n}} \right|\frac{\varepsilon }{2}$
当$nN(\varepsilon )$就有$\left| n{{a}_{n}} \right|\frac{\varepsilon }{2}$的最小自然数${{N}_{1}}$,当$n{{N}_{1}}$时,有
$\left| \frac{\sum\limits_{k=0}^{n}{k{{a}_{k}}}}{n} \right|\le \frac{\sum\limits_{k=0}^{n}{\left| k{{a}_{k}} \right|}}{n}=\frac{\sum\limits_{k=0}^{{{N}_{1}}}{\left| k{{a}_{k}} \right|}}{n}+\frac{\sum\limits_{k={{N}_{1}}+1}^{n}{\left| k{{a}_{k}} \right|}}{n}\frac{\sum\limits_{k=0}^{{{N}_{1}}}{\left| k{{a}_{k}} \right|}}{n}+\frac{(n-{{N}_{1}})\varepsilon }{2n}\frac{\sum\limits_{k=0}^{{{N}_{1}}}{\left| k{{a}_{k}} \right|}}{n}+\frac{\varepsilon }{2}$
考虑到$\underset{n\to +\infty }{\mathop{\lim }}\,\frac{\sum\limits_{k=0}^{{{N}_{1}}}{\left| k{{a}_{k}} \right|}}{n}=0$
则对上述$\varepsilon 0$,存在${{N}_{2}}0$,当$n{{N}_{2}}$时,有$\frac{\sum\limits_{k=0}^{n}{\left| k{{a}_{k}} \right|}}{n}\frac{\varepsilon }{2}$
令$N=\max \{{{N}_{1}},{{N}_{2}}\}$,当$nN$时,有$\frac{\sum\limits_{k=0}^{n}{\left| k{{a}_{k}} \right|}}{n}\varepsilon $
于是$\underset{n\to +\infty }{\mathop{\lim }}\,{{\delta }_{n}}=0$
由题可知:$\underset{n\to +\infty }{\mathop{\lim }}\,f(1-\frac{1}{n})=s$
于是存在$N0$,当$nN$时,有$\left| f(1-\frac{1}{n})-s \right|\frac{\varepsilon }{3},{{\delta }_{n}}\frac{\varepsilon }{3},n\left| {{a}_{n}} \right|\frac{\varepsilon }{3}$
记${{S}_{n}}=\sum\limits_{k=0}^{n}{{{a}_{k}}}$,且${{S}_{n}}-s=f(x)-s+\sum\limits_{k=0}^{n}{{{a}_{k}}(1-{{x}^{k}})-\sum\limits_{k=n+1}^{+\infty }{{{a}_{k}}{{x}^{k}}}}$
注意到对每个$k$以及$x\in (0,1)$,有$1-{{x}^{k}}=(1-x)(1+x+\cdots +{{x}^{k-1}})\le k(1-x)$
因此,当$nN$且$x\in (0,1)$时,有
$\left| {{S}_{n}}-s \right|\le \left| f(x)-s \right|+(1-x)\sum\limits_{k=0}^{n}{k\left| {{a}_{n}} \right|}+\frac{\varepsilon }{3n(1-x)}$
令$x=1-\frac{1}{n}$,则$\left| {{S}_{n}}-s \right|\frac{\varepsilon }{3}+\frac{\varepsilon }{3}+\frac{\varepsilon }{3}=\varepsilon $
即$\sum\limits_{n=0}^{+\infty }{{{a}_{n}}}$收敛且和为$s$
六、(15分)讨论正数$\alpha 0$的初值问题$\left\{\begin{array}{ll} y = {\left| y \right|^\alpha } \\ y(0) = 0 \end{array} \right.$的解的稳定性
解:由于$\left| f(x,{{y}_{1}})-f(x,{{y}_{2}}) \right|=\left| {{\left| {{y}_{1}} \right|}^{\alpha }}-{{\left| {{y}_{2}} \right|}^{\alpha }} \right|\le \left| y_{1}^{\alpha }-y_{2}^{\alpha } \right|\le {{C}_{\alpha }}{{\left| {{y}_{1}}-{{y}_{2}} \right|}^{\alpha }}$
令$F(r)={{\left| r \right|}^{\alpha }}$,有
$\int_{0}^{{{r}_{1}}}{\frac{dr}{F(r)}=}\int_{0}^{{{r}_{1}}}{\frac{dr}{{{\left| r \right|}^{\alpha }}}}$ $=\left\{\begin{array}{ll} \frac{1}{{1 - \alpha }}{\left| r \right|^{1 - \alpha }}|_0^{{r_1}}, \hbox{$\alpha \ne 1$;} \\ \ln \left| r \right||_0^{{r_1}}, \hbox{$\alpha=1$;} \end{array} \right.$
因此当$\alpha \ge 1$时,$\int_{0}^{{{r}_{1}}}{\frac{dr}{F(r)}=\infty }$
当$0\alpha 1$时,$\int_{0}^{{{r}_{1}}}{\frac{dr}{F(r)}\infty }$
于是$\alpha \ge 1$时解唯一;当$0\alpha 1$时解不唯一
七、(15分)已知$A$是$n\times n$阶的非奇异复矩阵,求证:$A=UT$(其中$U$为酉矩阵,而$T$是对角线元素均大于$0$的对角矩阵)
证明:设$A={{({{a}_{ij}})}_{n\times n}},\left| A \right|\ne 0$,令$A=({{\alpha }_{1}},{{\alpha }_{2}},\cdots ,{{\alpha }_{n}})$
其中${{\alpha }_{i}}$为$A$的列向量,则${{\alpha }_{1}},{{\alpha }_{2}},\cdots ,{{\alpha }_{n}}$线性无关
由施密特正交化,令
$\left\{\begin{array}{ll} {\beta _1} = {\alpha _1}, \\ {\beta _2} = {\alpha _2} - \frac{{({\alpha _2},{\beta _1})}}{{({\beta _1},{\beta _1})}}{\beta _1}, \\ \vdots \\ {\beta _n} = {\alpha _n} - \frac{{({\alpha _n},{\beta _1})}}{{({\beta _1},{\beta _1})}}{\beta _1} - \cdots - \frac{{({\alpha _n},{\beta _{n - 1}})}}{{({\beta _{n - 1}},{\beta _{n - 1}})}}{\beta _{n - 1}} \end{array} \right.$
其中$(\alpha ,\beta )=\alpha \beta $,则
$\left\{\begin{array}{ll} {\alpha _1} = {\beta _1}, \\ {\alpha _2} = \frac{{({\alpha _2},{\beta _1})}}{{({\beta _1},{\beta _1})}}{\beta _1} + {\beta _2}, \\ \vdots \\ {\alpha _n} = \frac{{({\alpha _n},{\beta _1})}}{{({\beta _1},{\beta _1})}}{\beta _1} - \cdots - \frac{{({\alpha _n},{\beta _{n - 1}})}}{{({\beta _{n - 1}},{\beta _{n - 1}})}}{\beta _{n - 1}} + {\beta _n} \end{array} \right.$
于是
$A=({{\alpha }_{1}},{{\alpha }_{2}},\cdots ,{{\alpha }_{n}})$$ =({\beta _1},{\beta _2}, \cdots ,{\beta _n})\left(\begin{array}{cccc} 1 {{b_{12}}} \cdots {{b_{1n}}} \\ 0 1 \cdots {{b_{1n}}} \\ \vdots \vdots \ddots \vdots \\ 0 0 \cdots 1 \end{array}\right) $
其中${b_{ij}}=\left\{\begin{array}{ll} \frac{{({\alpha _j},{\beta _i})}}{{({\beta _i},{\beta _i})}}, \hbox{$i \ne j$;} \\ 1, \hbox{$i = j$.} \end{array} \right.$
将${{\beta }_{i}}$单位化,即${{\gamma }_{i}}=\frac{{{\beta }_{i}}}{\left| {{\beta }_{i}} \right|},\left| {{\beta }_{i}} \right|=\sqrt{\beta _{i}^{}{{\beta }_{i}}}0,i=1,2,\cdots ,n$
令$U=({{\gamma }_{1}},{{\gamma }_{2}},\cdots ,{{\gamma }_{n}})$,则$U$为酉矩阵,且
$A=({\gamma _1},{\gamma _2},\cdots ,{\gamma _n})$$ \left(\begin{array}{cccc} {\left| {{\beta _1}} \right|} \\ {\left| {{\beta _2}} \right|} \\ \ddots \\ {\left| {{\beta _n}} \right|} \end{array}\right) $$ \left(\begin{array}{cccc} 1 {{b_{12}}} \cdots {{b_{1n}}} \\ 0 1 \cdots {{b_{1n}}} \\ \vdots \vdots \ddots \vdots \\ 0 0 \cdots 1 \end{array}\right) $=UT
其中$T=$$ \left(\begin{array}{cccc} {\left| {{\beta _1}} \right|} \\ {\left| {{\beta _2}} \right|} \\ \ddots \\ {\left| {{\beta _n}} \right|} \end{array}\right) $$ \left(\begin{array}{cccc} 1 {{b_{12}}} \cdots {{b_{1n}}} \\ 0 1 \cdots {{b_{1n}}} \\ \vdots \vdots \ddots \vdots \\ 0 0 \cdots 1 \end{array}\right) $$ =\left(\begin{array}{cccc} {\left| {{\beta _1}} \right|} \\ {\left| {{\beta _2}} \right|} \\ \ddots \\ {\left| {{\beta _n}} \right|} \end{array}\right) $是主对角元为正的上三角阵
八、(20分)设$V={{M}_{2}}(C)$是二阶复方阵全体在通常运算下构成的复数域$C$上的线性空间$ A=\left(\begin{array}{cccc} a b \\ c d \end{array}\right) $$ \in V$定义$V$上的线性变换为 $f(X)=XA,\forall X\in V$
(1)求$f$在$V$的基
\[{E_{11}} = \left( {\begin{array}{*{20}{c}} 10\\ 00 \end{array}} \right),{E_{12}} = \left( {\begin{array}{*{20}{c}} 01\\ 00 \end{array}} \right),{E_{21}} = \left( {\begin{array}{*{20}{c}} 00\\ 10 \end{array}} \right),{E_{22}} = \left( {\begin{array}{*{20}{c}} 00\\ 01 \end{array}} \right)\]
下的矩阵$M;$
(2)请给出$V$关于$f$的两个非零不变子空间${{V}_{1}},{{V}_{2}}$,使得$V={{V}_{1}}\oplus {{V}_{2}}$(要求给出${{V}_{1}},{{V}_{2}}$的基,并阐述“${{V}_{1}},{{V}_{2}}$关于$f$是不变的”以及“$V={{V}_{1}}\oplus {{V}_{2}}$”的理由);
(3)证明:存在$V$的一个基使得$f$在这个基下的矩阵为对角阵当且仅当$A$与对角阵相似.
解:
(1)由定义知:
$f({E_{11}}) $$ = \left( {{E_{11}},{E_{12}},{E_{21}},{E_{22}}} \right)\left(\begin{array}{cccc} a \\ b \\ 0 \\ 0 \end{array}\right) $,$f({E_{12}}) $$ = \left( {{E_{11}},{E_{12}},{E_{21}},{E_{22}}} \right)\left(\begin{array}{cccc} c \\ d \\ 0 \\ 0 \end{array}\right) $
$f({E_{21}}) $$ = \left( {{E_{11}},{E_{12}},{E_{21}},{E_{22}}} \right)\left(\begin{array}{cccc} 0 \\ 0 \\ a \\ b \end{array}\right) $,$f({E_{22}}) $$ = \left( {{E_{11}},{E_{12}},{E_{21}},{E_{22}}} \right)\left(\begin{array}{cccc} 0 \\ 0 \\ c \\ d \end{array}\right) $
于是$f({E_{11}},{E_{12}},{E_{21}},{E_{22}})$$ = ({E_{11}},{E_{12}},{E_{21}},{E_{22}})\left(\begin{array}{cccc} a c 0 0 \\ b d 0 0 \\ 0 0 a c \\ 0 0 b d \end{array}\right) $
即对应的矩阵为$\left(\begin{array}{cccc} a c 0 0 \\ b d 0 0 \\ 0 0 a c \\ 0 0 b d \end{array}\right) $
(2)令${{V}_{1}}=L({{E}_{11}},{{E}_{12}}),{{V}_{2}}=L({{E}_{21}},{{E}_{22}})$,则${{V}_{1}},{{V}_{2}}$是关于$f$的不变子空间,理由如下
对任意的${k_{11}}{E_{11}} + {k_{12}}{E_{12}}$$ =\left(\begin{array}{cccc} {{k_{11}}} {{k_{12}}} \\ 0 0 \end{array}\right) $$ \in V$,有
$f({k_{11}}{E_{11}} + {k_{12}}{E_{12}})$$ =\left(\begin{array}{cccc} {{k_{11}}} {{k_{12}}} \\ 0 0 \end{array}\right) $$\left(\begin{array}{cccc} a c \\ b d \end{array}\right) $$=\left(\begin{array}{cccc} {a{k_{11}} + c{k_{12}}} {b{k_{11}} + d{k_{12}}} \\ 0 0 \end{array}\right) $$ \in V$
则${{V}_{1}}$是关于$f$的不变子空间
同理可证${{V}_{2}}$是关于$f$的不变子空间
且$\dim{{V}_{1}}=\dim{{V}_{2}}=1,{{V}_{1}}\cap {{V}_{2}}=\{0\},\dim{{V}_{1}}+\dim{{V}_{2}}=2$
于是${{V}_{1}}\oplus {{V}_{2}}=V$
(3)
充分性:设$A={{P}^{-1}}diag({{\lambda }_{1}},{{\lambda }_{2}})P$,其中${{\lambda }_{1}},{{\lambda }_{2}}$是$A$的全部特征值
则$f({{E}_{11}}P)={{\lambda }_{1}}{{E}_{11}}P,f({{E}_{12}}P)={{\lambda }_{2}}{{E}_{12}}P,f({{E}_{21}}P)={{\lambda }_{1}}{{E}_{21}}P,f({{E}_{22}}P)={{\lambda }_{2}}{{E}_{22}}P$
于是$f$在基${{E}_{11}}P,{{E}_{12}}P,{{E}_{21}}P,{{E}_{22}}P$下的矩阵为$ \left(\begin{array}{cccc} {{\lambda _1}} \\ {{\lambda _2}} \\ {{\lambda _3}} \\ {{\lambda _4}} \end{array}\right) $
必要性:若$A$不与对角阵相似
由于$A$是复矩阵,故存在可逆矩阵$Q$,使得$A=$$ {Q^{ - 1}}\left(\begin{array}{cccc} l k \\ 0 l \end{array}\right) $$Q$,$k \ne 0$
于是
$f({{E}_{11}}Q)=l{{E}_{11}}Q+k{{E}_{12}}Q,f({{E}_{12}}Q)=l{{E}_{12}}Q,f({{E}_{21}}Q)=l{{E}_{21}}Q+k{{E}_{22}}Q,f({{E}_{22}}Q)=l{{E}_{22}}Q$
即$f$在基${{E}_{11}}Q,{{E}_{12}}Q,{{E}_{21}}Q,{{E}_{22}}Q$下的矩阵为$ \left(\begin{array}{cccc} l \\ k l \\ l \\ k l \end{array}\right) $
而$B$的初等因子为${{(\lambda -l)}^{2}},{{(\lambda -l)}^{2}}$,故$B$不与对角阵相似,矛盾