KVM 虚拟化架构和实现原理

简介: 目录目录KVM虚拟化架构devkvmQEMUOpenstackKVMQEMU 的关系KVM的虚拟化实现KVM虚拟化架构KVM是嵌入在Linux操作系统标准内核中的一个虚拟化模块,它能够将一个Linux标准内核转换成为一个VMM,嵌有KVM模块的Linux标准内核可以支持通过kvm tools来进行加载的GuestOS。

目录

KVM虚拟化架构

这里写图片描述

KVM是嵌入在Linux操作系统标准内核中的一个虚拟化模块,它能够将一个Linux标准内核转换成为一个VMM,嵌有KVM模块的Linux标准内核可以支持通过kvm tools来进行加载的GuestOS。所以在这样的操作系统平台下,计算机物理硬件层上直接就是VMM虚拟化层,而没有独立出来的HostOS操作系统层。在这样的环境中HostOS就是一个VMM。

每个由KVM创建的GuestOS都是HostOS(或VMM)上的一个单个进程。而在GuestOS上的User-space中运行的Applications可以理解为就是进程中的线程。

需要注意的是:KVM只是虚拟化解决方案的一部分,想要实现全虚拟化,还需要其他的条件:
1. CPU处理器提供的虚拟化支持(VT-x 硬件辅助虚拟化,可以为GuestOS创建虚拟化处理器,本质是对寄存器的隔离模拟和对指令集的划分)。
2. 内存可以通过kvm虚拟化成独立的虚拟化地址(/dev/kvm)
3. I/O虚拟化(QEMU)

==> KVM虚拟化 = KVM内核模块 + /dev/kvm + QEMU

/dev/kvm

Linux操作系统标准内核中的KVM内核模块生成了一个名为/dev/kvm的设备,有了/dev/kvm设备,使得GuestOS的地址空间(内存地址、磁盘地址)能够独立于标准内核或其他任何GuestOS的地址空间。Linux操作系统目录结构包含的/dev目录树下的设备对于所有User-space进程或线程(无论是在GuestOS上,还是在VMM上)来说都是通用的,但是每个打开/dev/kvm设备的不同的进程或线程,所能使用的都是唯一且各不相同的地址映射(为了支持GuestOS间的隔离)。

KVM内核模块通过/dev/kvm设备提供了内存虚拟化,给予GuestOS与内核或者其他GuestOS相对独立的地址空间。每个GuestOS都有自己的地址空间,并且这些地址空间是在实例化GuestOS时创建映射的。映射给GuestOS的物理内存实际上是映射给这个GuestOS在VMM中相应进程的虚拟内存。
有两种支持Guest地址到Host(VMM)地址的转换方法:

  • 应用LinuxOS维护的一组影子页表(shadow page table)
  • CPU也可以通过在访问未经映射的内存位置时使用VMM(主机内核)来支持内存转换进程。

所以总的来说,/dev/kvm设备的作用就是:将不同的GuestOS之间的地址隔离,或将GuestOS和HostOS(VMM)之间的地址隔离

QEMU

QEMU是一个I/O虚拟化解决方案,能够对一个完整的计算机物理层环境进行虚拟化(EG. 磁盘、图形适配器、网络设备)。

在GuestOS中生成的所有I/O请求都会被QEMU中途截获,并重新发送到QEMU进程模拟的User Mode中。

Openstack、KVM、QEMU 的关系

KVM 用来模拟 CPU 的运行,但缺少了对 Network 和 I/O 的支持。QEMU-KVM 是一个完整的模拟器,它基于 KVM 上,提供了完整的 Network 和 I/O 支持。其中 Openstack 为了跨 VM 性,所以不会直接控制 QEMU-KVM,而是通过 libvit 的库去间接控制 QEMU-KVM 。

KVM的虚拟化实现

这里写图片描述

KVM内核模块为Linux标准内核引入了一种除现有的Kernel ModeUser Mode之外的新进程模式。这种新模式就称为Guest Mode模式,顾名思义,它用来执行GuestOS的代码。
Linux标准内核的执行模式可以针对不同的运行内容和目的进行定义。Guest Mode的存在就是为了执行GuestOS的代码,但是只针对那些非I/O的代码。I/O代码还需要QEMU来作为支持。

GuestOS可以在两种模式下运行:

  • 在Guest Mode中运行的GuestOS可以支持标准的内核。
  • 在User Mode下运行的GuestOS则支持自己的内核和User-space(Applications)。

相同的是,GuestOS只能够在User Mode下执行I/O操作,而且这是单独使用QEMU-KVM进行管理的。

相关文章
|
10天前
|
开发者 容器
Flutter&鸿蒙next 布局架构原理详解
本文详细介绍了 Flutter 中的主要布局方式,包括 Row、Column、Stack、Container、ListView 和 GridView 等布局组件的架构原理及使用场景。通过了解这些布局 Widget 的基本概念、关键属性和布局原理,开发者可以更高效地构建复杂的用户界面。此外,文章还提供了布局优化技巧,帮助提升应用性能。
73 4
|
10天前
|
存储 Dart 前端开发
flutter鸿蒙版本mvvm架构思想原理
在Flutter中实现MVVM架构,旨在将UI与业务逻辑分离,提升代码可维护性和可读性。本文介绍了MVVM的整体架构,包括Model、View和ViewModel的职责,以及各文件的详细实现。通过`main.dart`、`CounterViewModel.dart`、`MyHomePage.dart`和`Model.dart`的具体代码,展示了如何使用Provider进行状态管理,实现数据绑定和响应式设计。MVVM架构的分离关注点、数据绑定和可维护性特点,使得开发更加高效和整洁。
145 3
|
13天前
|
监控 API 调度
开放源代码平台Flynn的架构与实现原理
【10月更文挑战第21天】应用程序的生命周期涉及从开发到运行的复杂过程,包括源代码、构建、部署和运行阶段。
|
21天前
|
存储 Linux 调度
KVM 虚拟化的功能特性
【10月更文挑战第13天】虚拟化技术创建实体资源的虚拟版本,提升资源利用率。KVM(Kernel-based Virtual Machine)作为全虚拟化解决方案,借助Linux内核实现Hypervisor功能,通过模块化方式提供高效的虚拟化环境。
|
23天前
|
容器
Flutter&鸿蒙next 布局架构原理详解
Flutter&鸿蒙next 布局架构原理详解
|
1月前
|
前端开发 Java 应用服务中间件
21张图解析Tomcat运行原理与架构全貌
【10月更文挑战第2天】本文通过21张图详细解析了Tomcat的运行原理与架构。Tomcat作为Java Web开发中最流行的Web服务器之一,其架构设计精妙。文章首先介绍了Tomcat的基本组件:Connector(连接器)负责网络通信,Container(容器)处理业务逻辑。连接器内部包括EndPoint、Processor和Adapter等组件,分别处理通信、协议解析和请求封装。容器采用多级结构(Engine、Host、Context、Wrapper),并通过Mapper组件进行请求路由。文章还探讨了Tomcat的生命周期管理、启动与停止机制,并通过源码分析展示了请求处理流程。
|
1月前
|
存储 分布式计算 druid
大数据-155 Apache Druid 架构与原理详解 数据存储 索引服务 压缩机制
大数据-155 Apache Druid 架构与原理详解 数据存储 索引服务 压缩机制
49 3
|
1月前
|
消息中间件 分布式计算 druid
大数据-154 Apache Druid 架构与原理详解 基础架构、架构演进
大数据-154 Apache Druid 架构与原理详解 基础架构、架构演进
27 2
|
1月前
|
消息中间件 监控 Java
大数据-109 Flink 体系结构 运行架构 ResourceManager JobManager 组件关系与原理剖析
大数据-109 Flink 体系结构 运行架构 ResourceManager JobManager 组件关系与原理剖析
58 1
|
2月前
|
KVM 虚拟化
虚拟化技术概述及KVM环境安装
关于虚拟化技术概述及KVM环境安装的教程,涵盖了虚拟化的定义、分类、管理工具,以及KVM的系统需求、安装步骤和使用指南。
72 11
虚拟化技术概述及KVM环境安装
下一篇
无影云桌面