Facebook 推机器视觉方案,能轻易读懂图片信息-阿里云开发者社区

开发者社区> 雷锋网> 正文

Facebook 推机器视觉方案,能轻易读懂图片信息

简介:

完善对象分割方法(Learning to Refine Object Segments)

Facebook 推机器视觉方案,能轻易读懂图片信息

论文摘要

要实现对象分割,需要获得两方面的信息,一是目标层级的信息,二是更低级别即像素级别的信息。这就为前馈网络提出了挑战:卷积网络中的底层获取了大量的空间信息,而更高层则需要目标层级的信息,无法随着对象的造型及外观变化进行调整,效果不佳。本次研究中,我们为目标分隔的前馈网络提出了一种新的自上而下的改善方法。这种由顶层到底层的结构能够有效地做出高保真目标图像。该方法与跳接相比,相同点是都在网络各层级中放大了图像特征,不同点在于,我们的方法不在每层中输出独立的预测,而是先在前馈过程中输出一个粗略的图像编码,然后再在由上至下的过程中,用底层的图像特征依次向上完善该编码。这种方法更加简单、快捷和有效。在最近流行的 DeepMask 网络中做出图像指令,我们的方法将图像精确度平均提升了 10-20%。另外,在总体网络结构的最优化问题中,我们采用了 SharpMask,与原有的 DeepMask 网络相比,速度提升了50%(8 秒/图)。

作者简介

Pedro O. Pinheiro,供职于 Idiap Research Institute 和 Ecole Polytechnique Federale de Lausanne(EPFL)。

Tsung-Yi Lin 来自康奈尔大学康奈尔技术研究院。

结论和场景应用

本文针对快速对象分割任务发展了一种新的网络结构,对前馈网络进行自上而下通路的完善。文中的模型使目标图像无论是在处理速度还是在质量方面都有了大的提升。该方法可以广泛应用在各种像素标注的任务中。

via Research at Facebook

PS:本文由雷锋网(搜索“雷锋网(公众号:雷锋网)”公众号关注)独家编译,未经许可不得转载!

可在此处进行原论文下载

推荐阅读:

论文精选 | 实现城市设备智能规划?——具有可选偏好的设施选址游戏

深度 | 计算机如何从乐盲到作曲家?建 28 层神经网络,听 8000 个 MIDI 乐章


本文作者:何忞


本文转自雷锋网禁止二次转载,原文链接

版权声明:如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件至:developerteam@list.alibaba-inc.com 进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容。

分享:
+ 订阅

秉承“关注智能与未来”的宗旨,持续对全球前沿技术趋势与产品动态进行深入调研与解读。

官网链接