生产环境发布管理

简介: 本文介绍大型团队中多环境自动化发布流程,涵盖dev、test、pre、prod各环境职责,结合CI/CD平台实现高效部署,并通过Skywalking等工具实现日志追踪与问题排查。

前言

在一个大型团队中,生产发布是一件复杂的事情,从dev(前后端联调)-->test(测试集成&压力测试)-->pre(灰度测试)-->prod(生产环境)的多环境推进,以及生产环境的热更新、回滚等问题一直在困扰着各个公司,今天我将基于公司的自动化部署平台为大家讲解下我们是如何做到多环境部署。

每个环境做什么

在明确发布之前,我们需要明确一下每个环境的主要职责和角色:

DEV:也叫开发环境

  • 事项:前后端接口联调,修复代码基础缺陷
  • 角色:前端-后端

TEST:也叫测试环境

  • 事项:测试集成测试、压力测试,开发修复bug
  • 角色:开发(前端后端)、测试

PRE:也叫灰度环境

  • 事项:生产环境冒烟测试,切5个左右真实生产数据,回归流程是否有问题
  • 角色:开发(前端后端)、测试

PROD:也叫生产环境

  • 事项:发布代码,做真实环境验证,有问题第一时间修复(sql止血订正或代码回滚)
  • 角色:开发(前端后端)、测试、运维

大型公司如何管控代码发布

随着自动化部署CI/CD(DevOPS)成熟,目前大型公司都开始搭建自动化部署平台,形如下图:

图1 (自动化部署平台应用主页)

当用户进入应用主页后,会发现有不同的发布环境,每一个环境对应一台服务器、一个访问域名、一组中间件环境(即dev、test等环境的nacos-mysql等都是分环境部署的)。

图2 (自动化部署平台多环境)

同时自动化部署平台会自动整合公司的gitlab,将分支展现在发布平台,以便用户可以界面化操作和部署

图3 (自动化部署平台分支管理)

当用户需要创建分支时,不再需要像传统的那样去git创建,或者idea创建,而是可以直接在当前发布平台创建(底层是一样的,都是创建一个新的git分支)

图4 (自动化部署平台分支创建)

当用户需要发布时,只需要进入对应的环境(这里我们以test为例),勾选所需要发布的分支,即可实现自动化部署。下图可以看到test环境同时部署分支约20个。

图5 (自动化部署平台提交发布)

需要注意的是:假设我们需要对A分支进行发布,只需要勾选A分支,底层Jenkins会自动完成jar包构建,并执行底层的Docker run指令完成容器部署,这里部署的jar包每个环境都是隔离的。

即dev的jar跟test无关,每次都是新构建自己的。即使是test,点击两次发布也是构建了两个jar,只不过第二次的会覆盖第一次。这点各位需要明晰。

当测试提出我们有bug时,对应的开发人员就需要在idea中,A分支上完成代码修复并push,然后在自动化部署平台重新勾选分支,然后提交部署,完成一次重新发布,循环此过程,直至缺陷被修复。

如何排查日志

当测试提出某个环境有bug时,如果是传统Linux直接部署,我们会登录到指定的服务器用cat、grep、vim等指令进入日志文件,然后找到错误的堆栈信息。如果有结合Arthas的(Arthas排查错误)可以启动Arthas查看错误信息。但是现在一般都是会借助于Skywalking或ELK进行日志查看

图6 (自动化部署平台日志排查)

在上图中我们就可以看到:一个GET请求,请求路径是:/dict/default/staff,然后一个远程服务调用,使用的dubbo,最后查询mysql数据库,这样就完成一个完整的日志链路追踪。

如何回答相关问题

1.你们公司如何部署发布

方案一:Linux原生部署

我们公司的部署呢,还是比较原始的,就是直接部署在原生的Linux系统,我们平时dev发布就在idea构建好一个jar包,然后用XShell上传上去,用指令:nohup java -jar tj-learning.jar启动。测试环境和生产也是一样的操作

方案二:基于Jenkins的自动化部署平台

我们公司的部署都已经非常成熟了,有一套自动部署平台,底层是Jenkins+K8S实现自动化部署发布,我们只需要在dev、test、prod等环境勾选需要发布的分支就行,它全帮我们做好了自动部署。

2.你们公司怎么排查错误

方案一:Linux原生环境

我们公司的部署呢,还是比较原始的,就是直接部署在原生的Linux系统,所以排查日志也需要自己去找到error.log,然后手动找到报错的堆栈信息,分析出原因。比如有个NPE(NullPointException-空指针异常),就会显示具体哪行报错,我们就会分析、修复。

方案二:基于Docker的原生平台

我们公司目前的部署就是原生的Docker,通过docker logs命令人肉排查

方案三:基于Skywalking的日志检索平台(CI/CD平台)

对于日志排查,我们公司是有Skywalking的,只需要测试给我对应的traceId,我输入进去就可以看到完整的调用链路和报错的堆栈信息,然后就可以分析报错原因并修复了

相关文章
|
2月前
|
前端开发 程序员 开发者
常见注解及使用说明
本文介绍SpringMVC中@RequestMapping注解的作用与原理,讲解如何通过注解将HTTP请求映射到控制器方法,实现前后端接口对接,并简述@GetMapping等派生注解的封装关系,帮助开发者快速掌握接口路径定义机制。
常见注解及使用说明
|
1月前
|
存储 缓存 调度
阿里云Tair KVCache仿真分析:高精度的计算和缓存模拟设计与实现
在大模型推理迈向“智能体时代”的今天,KVCache 已从性能优化手段升级为系统级基础设施,“显存内缓存”模式在长上下文、多轮交互等场景下难以为继,而“以存代算”的多级 KVCache 架构虽突破了容量瓶颈,却引入了一个由模型结构、硬件平台、推理引擎与缓存策略等因素交织而成的高维配置空间。如何在满足 SLO(如延迟、吞吐等服务等级目标)的前提下,找到“时延–吞吐–成本”的最优平衡点,成为规模化部署的核心挑战。
514 38
阿里云Tair KVCache仿真分析:高精度的计算和缓存模拟设计与实现
|
人工智能 自然语言处理 大数据
阿里云百炼,带你搭建外贸图片翻译助手智能体 从阿里云OpenAPI导入机器翻译API,实现OpenAPI自定义MCP
阿里云提供一站式内容本地化解决方案,涵盖图文视频多模态翻译。通过机器翻译、图片诊断、标题优化等API,助力跨境电商高效实现商品信息多语言智能转换与优化,降低人工成本,提升出海效率。
532 0
|
1月前
|
传感器 SQL 人工智能
Qoder NEXT 来了:补全功能全新升级,AI 代码采纳率提升 65%
Qoder智能补全全面升级,推出全新品牌NEXT。基于自研模型,Qoder NEXT可感知代码库与编辑历史,预测开发意图,实现跨文件联动、多点位自动补全,突破传统补全局限。通过ActionRL算法构建“训练-反馈-优化”闭环,代码采纳率提升65%,助力AI编程“最后一公里”。
|
4月前
|
人工智能 运维 安全
加速智能体开发:从 Serverless 运行时到 Serverless AI 运行时
在云计算与人工智能深度融合的背景下,Serverless 技术作为云原生架构的集大成者,正加速向 AI 原生架构演进。阿里云函数计算(FC)率先提出并实践“Serverless AI 运行时”概念,通过技术创新与生态联动,为智能体(Agent)开发提供高效、安全、低成本的基础设施支持。本文从技术演进路径、核心能力及未来展望三方面解析 Serverless AI 的突破性价值。
|
2月前
|
存储 数据库
数据库设计三范式
本文介绍了数据库设计中的三范式(1NF、2NF、3NF),通过实例讲解各范式的要求与应用场景。第一范式要求字段原子性,不可再分;第二范式要求消除部分依赖,确保主键决定所有非主键字段;第三范式消除传递依赖。同时指出,范式是参考而非绝对准则,实际设计应结合业务需求灵活处理,以降低维护成本、提升效率。
人工智能 安全 IDE
607 31