1-MongoDB相关概念

简介: MongoDB是一款高性能、无模式的文档型数据库,适用于高并发读写、海量数据存储及高扩展性需求场景。广泛应用于社交、游戏、物流、物联网和视频直播等领域,支持灵活的数据模型与丰富的查询功能,是Web2.0时代替代传统关系型数据库的理想选择。

1.1 业务应用场景

传统的关系型数据库(如MySQL),在数据操作的“三高”需求以及应对Web2.0的网站需求面前,显得力不从心。“三高”需求:

  • High performance - 对数据库高并发读写的需求。
  • Huge Storage - 对海量数据的高效率存储和访问的需求。
  • High Scalability && High Availability- 对数据库的高可扩展性和高可用性的需求。

MongoDB应用场景

  1. 社交场景:使用 MongoDB 存储存储用户信息,以及用户发表的朋友圈信息,通过地理位置索引实现附近的人、地点等功能。
  2. 游戏场景:使用 MongoDB 存储游戏用户信息,用户的装备、积分等直接以内嵌文档的形式存储,方便查询、高效率存储和访问。
  3. 物流场景:使用 MongoDB 存储订单信息,订单状态在运送过程中会不断更新,以 MongoDB 内嵌数组的形式来存储,一次查询就能将订单所有的变更读取出来。
  4. 物联网场景:使用 MongoDB 存储所有接入的智能设备信息,以及设备汇报的日志信息,并对这些信息进行多维度的分析。
  5. 视频直播:使用 MongoDB 存储用户信息、点赞互动信息等。

这些应用场景中,数据操作方面的共同特点是:

1)数据量大

2)写入操作频繁(读写都很频繁)

3)价值较低的数据,对事务性要求不高

对于这样的数据,我们更适合使用MongoDB来实现数据的存储。

MongoDB什么时候用

在架构选型上,除了上述的三个特点外,如果你还犹豫是否要选择它?可以考虑以下的一些问题:

  • 应用不需要事务及复杂 join 支持
  • 新应用,需求会变,数据模型无法确定,想快速迭代开发
  • 应用需要2000-3000以上的读写QPS(更高也可以)
  • 应用需要TB甚至 PB 级别数据存储
  • 应用发展迅速,需要能快速水平扩展
  • 应用要求存储的数据不丢失
  • 应用需要99.999%高可用
  • 应用需要大量的地理位置查询、文本查询

如果上述有1个符合,可以考虑 MongoDB,2个及以上的符合,选择 MongoDB 绝不会后悔。

思考:如果用MySQL呢?

答:相对MySQL,可以以更低的成本解决问题(包括学习、开发、运维等成本)

1.2 MongoDB简介

MongoDB是一个开源、高性能、无模式的文档型数据库,当初的设计就是用于简化开发和方便扩展,是NoSQL数据库产品中的一种。是最像关系型数据库(MySQL)的非关系型数据库

它支持的数据结构非常松散,是一种类似于 JSON 的格式叫BSON,所以它既可以存储比较复杂的数据类型,又相当的灵活。 MongoDB中的记录是一个文档,它是一个由字段和值对(field:value)组成的数据结构。MongoDB文档类似于JSON对象,即一个文档认为就是一个对象。字段的数据类型是字符型,它的值除了使用基本的一些类型外,还可以包括其他文档、普通数组和文档数组。

1.3 体系结构

mysql和mongodb的区别

SQL术语/概念

MongoDB术语/概念

解释/说明

database

database

数据库

table

collection

数据库表/集合

row

document

数据记录行/文档

column

field

数据字段/域

index

index

索引

table joins

嵌入文档

表连接MongoDB不支持,通过嵌入式文档替代多表连接

primary key

primary key

主键,MongoDB自动将_id字段设置为主键

1.4 数据模型

MongoDB的最小存储单位就是文档(document)对象。文档(document)对象对应于关系型数据库的行。数据在MongoDB中以BSON(Binary-JSON)文档的格式存储在磁盘上。

BSON(Binary Serialized Document Format)是一种类json的一种二进制形式的存储格式,简称Binary JSON。BSON和JSON一样,支持内嵌的文档对象和数组对象,但是BSON有JSON没有的一些数据类型,如Date和BinData类型。 BSON采用了类似于 C 语言结构体的名称、对表示方法,支持内嵌的文档对象和数组对象,具有轻量性、可遍历性、高效性的三个特点,可以有效描述非结构化数据和结构化数据。这种格式的优点是灵活性高,但它的缺点是空间利用率不是很理想。

Bson中,除了基本的JSON类型:string,integer,boolean,double,null,array和object,mongo还使用了特殊的数据类型。这些类型包括 date,object id,binary data,regular expression 和code。每一个驱动都以特定语言的方式实现了这些类型,查看你的驱动的文档来获取详细信息。

BSON数据类型参考列表:

数据类型

描述

举例

字符串

UTF-8字符串都可表示为字符串类型的数据

{"x" : "foobar"}

对象id

对象id是文档的12字节的唯一ID

{"X" :ObjectId() }

布尔值

真或者假:true或者false

{"x":true}+

数组

值的集合或者列表可以表示成数组

{"x" : ["a", "b", "c"]}

32位整数

类型不可用。JavaScript仅支持64位浮点数,所以32位整数会被自动转换。

shell是不支持该类型的,shell中默认会转换成64位浮点数

64位整数

不支持这个类型。shell会使用一个特殊的内嵌文档来显示64位整数

shell是不支持该类型的,shell中默认会转换成64位浮点数

64位浮点数

shell中的数字就是这一种类型

{"x":3.14159,"y":3}

null

表示空值或者未定义的对象

{"x":null}

undefined

文档中也可以使用未定义类型

{"x":undefined}

符号

shell不支持,shell会将数据库中的符号类型的数据自动转换成字符串


正则表达式

文档中可以包含正则表达式,采用JavaScript的正则表达式语法

{"x" : /foobar/i}

代码

文档中还可以包含JavaScript代码

{"x" : function() { /* …… */ }}

二进制数据

二进制数据可以由任意字节的串组成,不过shell中无法使用


1.5 MongoDB的特点

高性能

MongoDB提供高性能的数据持久性。特别对嵌入式数据模型的支持减少了数据库系统上的I/O活动。

索引支持更快的查询,并且可以包含来自嵌入式文档和数组的键。(文本索引解决搜索的需求、TTL索引解决历史数据自动过期的需求、地理位置索引可用于构建各种 O2O 应用) mmapv1、wiredtiger、mongorocks(rocksdb)、in-memory 等多引擎支持满足各种场景需求。 Gridfs解决文件存储的需求。

高可用性

MongoDB的复制工具称为副本集(replica set),它可提供自动故障转移和数据冗余。

高扩展性

MongoDB提供了水平可扩展性作为其核心功能的一部分。 分片将数据分布在一组集群的机器上。(海量数据存储,服务能力水平扩展) 从3.4开始,MongoDB支持基于片键创建数据区域。在一个平衡的集群中,MongoDB将一个区域所覆盖的读写只定向到该区域内的那些片。

丰富的查询支持

MongoDB支持丰富的查询语言,支持读和写操作(CRUD),比如数据聚合、文本搜索和地理空间查询等。


相关文章
|
2月前
|
机器学习/深度学习 存储 自然语言处理
大模型基础概念术语解释
大语言模型(LLM)基于Transformer架构,通过海量文本训练,具备强大语言理解与生成能力。其核心组件包括注意力机制、位置编码与嵌入层,支持文本分割为Token进行处理。参数量达亿级以上,规模增长带来涌现能力,如复杂推理与跨任务泛化。混合专家模型(MoE)提升效率,推动模型持续扩展。
|
2月前
|
测试技术 开发者
提升debug效率
单元测试是软件工程的坚实基础,具备快速、稳定、易定位问题的优势。因其无外部依赖,执行高效,反馈迅速;稳定性强,不受其他模块变更影响;且以最小单位测试,显著缩小问题范围,提升调试效率,是开发者最信赖的测试方式。
|
2月前
|
存储 消息中间件 开发框架
应用架构图
在业务架构基础上,技术架构将需求转化为技术实现。它涵盖分层设计、技术选型与关键组件关系,包括单体四层结构(表现、业务、数据、基础层)与分布式应用的调用关系,明确内外系统边界,形成完整技术蓝图。
|
2月前
|
Java
高效遍历 Map:优先使用 entrySet 或 JDK 8 的 forEach
在Java开发中,遍历Map时推荐使用`entrySet()`或JDK 8的`forEach()`,避免通过`keySet()`重复查找值。前者直接获取键值对,效率更高;后者结合Lambda,代码更简洁。根据场景选择合适方式,提升性能与可读性。
|
2月前
|
存储 缓存 Java
自动装配机制
本文深入解析SpringBoot自动装配机制,从@SpringBootApplication注解入手,剖析其组合注解原理。重点讲解@ComponentScan、@SpringBootConfiguration及@EnableAutoConfiguration三大核心注解的源码实现,揭示@AutoConfigurationPackage与AutoConfigurationImportSelector如何通过SpringFactoriesLoader加载配置,实现自动化注册与组件扫描,最终完成自动装配全过程。
 自动装配机制
|
2月前
|
存储 安全 Java
6.鉴权
本文介绍基于Spring Security与JWT的客户端Token认证方案,涵盖实现思路、核心代码及完整流程。通过JWT生成与验签、自定义过滤器和权限控制,实现安全的Spring Boot应用认证体系,并支持RBAC权限模型。
 6.鉴权
|
2月前
|
Java Maven
3. 打包
本文介绍Java项目打包为可执行JAR的两种方式:一是将所有内容打包进单一JAR,通过Maven配置mainClass并使用`mvn clean package`构建,运行`java -jar`启动;二是将JAR、依赖与配置文件分离,便于管理。同时提供后台运行及停止进程的方法。
 3. 打包
|
2月前
|
SQL 运维 分布式计算
如何做好SQL质量监控
SLS推出用户级SQL质量监控功能,集成于CloudLens for SLS,提供健康分、服务指标、运行明细、SQL Pattern分析及优化建议五大维度,助力用户全面掌握SQL使用情况,提升日志分析效率与治理能力。
 如何做好SQL质量监控
|
2月前
|
自然语言处理 关系型数据库 MySQL
数据聚合、自动补全、数据同步
本文介绍了Elasticsearch中数据聚合、自动补全及数据同步的实现。通过聚合功能,可对数据进行分组、统计与分析;利用拼音分词器和Completion Suggester实现搜索框自动补全;结合MQ或监听binlog实现MySQL与Elasticsearch间的数据同步,确保数据一致性,提升搜索体验。
数据聚合、自动补全、数据同步
|
2月前
|
Java 数据格式 微服务
SpringBoot使用汇总
Spring Boot是Spring生态的快速开发框架,简化配置与部署,实现“开箱即用”。它整合常用第三方库,减少XML配置,内嵌服务器,助力微服务构建。本课程基于2.0.3版本,涵盖基础与进阶实战,助你快速掌握企业级应用开发技能。