阿里生产故障专题01

简介: 本文记录了一次FullGC导致CPU使用率飙升至104%的故障排查过程。通过分析JVM堆内存,发现因将Excel数据以List<Map>形式加载至内存且未及时释放,导致对象膨胀、频繁FullGC。结合JProfiler定位大对象,最终通过优化数据存储结构、减少内存占用解决了问题,总结了从监控识别到根因分析的完整排查思路。

一场FullGC故障排查

一、问题发现与排查

1.1 找到问题原因

问题起因是我们收到了jdos的容器CPU告警,CPU使用率已经达到104%

观察该机器日志发现,此时有很多线程在执行跑批任务。正常来说,跑批任务是低CPU高内存型,所以此时考虑是FullGC引起的大量CPU占用(之前有类似情况,告知用户后重启应用后解决问题)。

通过泰山查看该机器内存使用情况:

可以看到CPU确实使用率偏高,但是内存使用率并不高,只有62%,属于正常范围内。

到这里其实就有点迷惑了,按道理来说此时内存应该已经打满才对。

后面根据其他指标,例如流量的突然进入也怀疑过是jsf接口被突然大量调用导致的cpu占满,所以内存使用率不高,不过后面都慢慢排除了。其实在这里就有点一筹莫展了,现象与猜测不符,只有CPU增长而没有内存增长,那么什么原因会导致单方面CPU增长?然后又朝这个方向排查了半天也都被否定了。

后面突然意识到,会不会是监控有“问题”?

换句话说应该是我们看到的监控有问题,这里的监控是机器的监控,而不是JVM的监控!

JVM的使用的CPU是在机器上能体现出来的,而JVM的堆内存高额使用之后在机器上体现的并不是很明显。

遂去sgm查看对应节点的jvm相关情况:

可以看到我们的堆内存老年代确实有过被打满然后又清理后的情况,查看此时的CPU使用情况也可以与GC时间对应上。

那么此时可以确定,是Full GC引起的问题。

1.2 找到FULL GC的原因

我们首先dump出了gc前后的堆内存快照,

然后使用JPofiler进行内存分析。(JProfiler是一款堆内存分析工具,可以直接连接线上jvm实时查看相关信息,也可以分析dump出来的堆内存快照,对某一时刻的堆内存情况进行分析)

首先将我们dump出来的文件解压,修改后缀名.bin,然后打开即可。(我们使用行云上自带的dump小工具,也可以自己去机器上通过命令手工dump文件)

首先选择Biggest Objects,查看当时堆内存中最大的几个对象。

从图中可以看出,四个List对象就占据了近900MB的内存,而我们刚刚看到堆内存最大也只有1.3GB,因此再加上其他的对象,很容易就会把老年代占满引发full gc的问题。

选择其中一个最大的对象作为我们要查看的对象

这个时候我们已经可以定位到对应的大内存对象对应的位置:

其实至此我们已经能够大概定位出问题所在,如果还是不确定的话,可以查看具体的对象信息,方法如下:

可以看到我们的大List对象,其实内部是很多个Map对象,而每个Map对象中又有很多键值对。

在这里也可以看到Map中的相关属性信息。

也可以在以下界面直接看到相关信息:

然后一路点下去就可以看到对应的属性。

至此,我们理论上已经找到了大对象在代码中的位置。

二、问题解决

2.1 找到大对象在代码中的位置与问题的根本原因

首先我们根据上述过程找到对应位置与逻辑

我们的项目中大概逻辑是这样的:

  1. 首先会解析用户上传的Excel样本,并将其加载到内存中作为一个List变量,即我们上述看到的变量。一个20w的样本,此时字段数量有a个,大概占用空间100mb左右。
  2. 然后遍历循环用户样本,根据用户样本中的数据,再增加一些额外的请求数据,根据此数据请求相关结果。此时字段数量有a+n个,占用空间已经在200mb左右。
  3. 循环完成后将此200mb的数据存入缓存。
  4. 开始生成excel,将200mb数据从缓存中取出,并根据之前记录的a个字段,取出初始的样本字段填充至excel。

用流程图表示为:

结合一些具体排查问题的图片:

其中一个现象是每次gc后的最小内存正在逐步变大,对应上述步骤中第二步,内存正在逐步膨胀。

结论

将用户上传的excel样本加载到内存中,并将其作为一个List<Map<String, String>>的结构存储起来,首先一个20mb的excel文件以此方式存储会膨胀占用120mb左右堆内存,此步骤会大量占用堆内存,并且因为任务逻辑原因,该大对象内存会在jvm中存在长达4-12小时之久,导致一但任务过多,jvm堆内存很容易被打满。

这里列举了为什么使用HashMap会导致内存膨胀,其主要原因是存储空间效率比较低:

一个Long对象占内存计算:在HashMap<Long,Long>结构中,只有Key和Value所存放的两个长整型数据是有效数据,共16字节(2×8字节)。这两个长整型数据包装成java.lang.Long对象之后,就分别具有8字节的MarkWord、8字节的Klass指针,再加8字节存储数据的long值(一个包装对象占24字节)。

然后这2个Long对象组成Map.Entry之后,又多了16字节的对象头(8字节MarkWord+8字节Klass指针=16字节),然后一个8字节的next字段和4字节的int型的hash字段(8字节next指针+4字节hash字段+4字节填充=16字节),为了对齐,还必须添加4字节的空白填充,最后还有HashMap中对这个Entry的8字节的引用,这样增加两个长整型数字,实际耗费的内存为(Long(24byte)×2)+Entry(32byte)+HashMapRef(8byte)=88byte,空间效率为有效数据除以全部内存空间,即16字节/88字节=18%。

——《深入理解Java虚拟机》5.2.6

以下是刚上传的excel中dump出的堆内存对象,其占用的内存达到了128mb,而上传的excel实际只有17.11mb。

空间效率17.1mb/128mb≈13.4%

2.2 如何解决此问题

暂且不讨论上述流程是否合理,解决办法一般可以分为两类,一类是治本,即不把该对象放入jvm内存中,转而存入缓存中,不在内存中则大对象问题自然迎刃而解。另一类是治标,即缩小该大内存对象,在日常使用场景下使其一般不会触发频繁的full gc问题。

两种方式各有优劣:

2.2.1 激进治疗:不把他存入内存

解决逻辑也很简单,例如在加载数据时,将其按照样本加载数据一条一条存入redis缓存,然后我们只需要知道样本中有多少的数量,按照数量的先后顺序从缓存中取出数据,即可解决该问题。

优点:可以从根本上解决此问题,以后基本上不会存在该问题,数据量再大只需要添加相应的redis资源即可。

缺点:首先会增加许多redis缓存空间消耗,其次从显示考虑对于我们项目来说,此处代码古老且晦涩难懂,改动需要较大工作量与回归测试。

2.2.2 保守治疗:缩减其数据量

分析2.1的上述流程,首先第三步是完全没必要的,先存入缓存再取出,额外占用缓存空间。(猜测系历史问题,此处不再深究)。

其次是在第二步中,多出来的字段n,在请求结束后该字段就已经无用了,因此可以考虑在请求结束后删除无用字段。

此时也有两种解决方案,一种是只删除无用字段缩减其map大小,然后将其作为参数传递给生成excel使用;另一种方式是请求完成直接删除该map,然后在生成excel时再重新读取用户上传的excel样本。

优点:改动较小,不需要太复杂的回归测试

缺点:在极端大数据量情况下,仍有可能出现full gc的情况

具体实现方式就不展开了。

其中一种实现方式

//获取有用的字段
String[] colEnNames = (String[]) colNameMap.get(Constant.BATCH_COL_EN_NAMES);
List<String> colList = Arrays.asList(colEnNames);
//去除无用的字段
param.keySet().removeIf(key -> !colList.contains(key));

三、拓展思考

首先本文中监控图是在复现当时场景时人为制造的gc常见。

在cpu使用率图中,大家可以观察到cpu使用率上升时间确实跟gc的时间相吻合,但是并没有出现当时场景中的104%的CPU使用率

其实直接原因比较简单,就是因为系统虽然出现了full gc,但是并没有频繁出现。

小范围低频率的full gc不太会引起系统的cpu飙升,这也是我们所看到的现象。

那么当时的场景是什么原因呢?

我们上文提到过,我们在堆内存中的大对象是会随着任务的进行逐步膨胀的,那么当我们的任务足够多,时间足够长,就有可能导致每次full gc后可用空间变得越来越小,当可用空间小到一定程度之后就,每次full gc完成之后发现空间还是不够使用,就会触发下一次的gc,从而导致最终结果的频繁发生gc,引起cpu频率的飙升不下。

四、问题排查总结

  • 当我们遇到线上cpu使用率过高的情况时,可以先查看是否是full gc引起的问题,注意要看的是jvm的监控,或者使用jstat相关命令查看。不要被机器内存监控所误导。
  • 如果确定是gc引起的问题,可以通过JProfiler直连线上jvm或者使用dump保存堆快照后离线分析。
  • 首先可以找到最大的对象,一般情况下是大对象引起的full gc。还有一种情况是,不像这么明显是四个大对象,也可能是比较均衡的十几个50mb的对象,具体情况还需要具体分析。
  • 通过上述工具找到确定有问题的对象后找到其堆栈对应的代码位置,通过代码分析找到问题的具体原因,通过其他现象推演猜测是否正确,进而找到问题的真正原因。
  • 根据问题的原因解决此问题。

当然,上述只是不算很复杂的排查情况,不同的系统肯定有不同的内存情况,我们应当具体问题具体分析,而从此次问题中可以学到的就是如果排查解决问题的思路.

相关文章
|
2月前
|
人工智能 自然语言处理 API
全面认识MCP:大模型连接真实世界的“USB-C接口”
MCP(模型上下文协议)是Anthropic推出的开放标准,旨在打通大模型与外部工具、数据源的连接壁垒,被誉为AI时代的“USB-C接口”。它通过统一的协议规范,实现AI智能体对各类工具的即插即用,简化开发流程,提升任务执行效率,推动AI应用向自动化、生态化演进。
277 0
全面认识MCP:大模型连接真实世界的“USB-C接口”
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
大模型专业名词解释手册
本文系统介绍了大语言模型(LLM)的核心概念、训练方法、优化技术、应用模式及伦理问题,涵盖Transformer架构、注意力机制、预训练与微调、提示工程、模型压缩、安全对齐等关键技术术语,全面解析大模型的工作原理与发展挑战,助力深入理解生成式AI的技术脉络与未来方向。
250 0
|
2月前
|
监控 Java 测试技术
阿里生产故障专题09
本文记录了一次Paimon数据湖与RocksDB集成服务线上频繁OOM的排查历程。通过分析线程暴增、堆外内存泄漏,最终定位到RocksDB JNI内存未释放问题,并结合MAT、NMT、async-profiler等工具深入剖析,总结出系统性排查思路与优化方案,为类似技术栈提供宝贵经验。
|
2月前
|
存储 缓存 监控
阿里生产故障专题08
本文深入剖析EFC&CTO测试中因缓存引发的数据不一致问题,通过日志分析与实验复现,定位到版本号回退导致旧数据写入文件系统,揭示了分布式缓存下pagecache管理的风险,并总结了内核行为与开发优化经验。
阿里生产故障专题08
|
2月前
|
Java 测试技术 API
阿里生产故障专题07
2025年6月Google Cloud因未灰度发布新功能导致全球服务中断7小时。本文结合该事件,深入剖析配置灰度发布的重要性,介绍基于Nacos的IP与标签灰度实现方案,强调通过渐进式发布降低系统风险,保障服务稳定性的关键作用。
阿里生产故障专题07
|
2月前
|
消息中间件 监控 Java
阿里生产故障专题06
本文排查了一例RocketMQ应用因Netty频繁申请堆外内存导致OS OOM的问题。根本原因为多个ClassLoader加载了多个Netty的PooledByteBufAllocator实例,各自独立占用堆外内存,总使用量远超MaxDirectMemorySize限制。虽单个Allocator受1G限制,但7个实例叠加致整体超限,且Netty通过Unsafe直接分配内存,绕过JVM管控,最终引发系统级OOM。
|
2月前
|
SQL 分布式计算 运维
阿里生产故障专题04
本文针对XXLJOB中超长定时任务的慢节点问题,通过资源优化、数据倾斜处理、视图落表、节点拆分及分布式MapJoin等手段,实现任务运行效率大幅提升,产出时间提前4小时以上,并有效降低回刷成本与计算堆积,提升系统稳定性与可维护性。
阿里生产故障专题04
|
2月前
|
消息中间件 运维 物联网
系统预警专题(语音通知)
适用于科技公司服务器或物联网设备异常时的语音告警通知。开通语音服务后,可申请资质、话术、模板与号码,通过API调用实现自动外呼,支持变量替换与呼叫记录查询,提升运维响应效率。(238字)
|
2月前
|
SQL 监控 机器人
系统预警专题( 钉钉通知)
本文介绍如何通过Java代码调用钉钉机器人API实现系统告警消息的实时发送。涵盖机器人创建、Webhook配置、PostMan测试及Java代码实现,并提供封装工具类、配置解耦等实战优化建议,确保监控告警高效稳定。
系统预警专题( 钉钉通知)
|
2月前
|
缓存 算法 Java
线程池
本文深入剖析Java线程池的工作原理,涵盖ThreadPoolExecutor与ScheduledThreadPoolExecutor的核心机制。通过源码分析揭示了线程复用、任务队列、调度策略及ThreadLocal父子线程数据传递等关键技术细节,系统阐述了线程池如何高效管理并发任务。
 线程池