Z-Score方法

简介: Z-Score方法

Z-Score方法是一种在统计学中常用的技术,用于识别数据集中的异常值。这种方法基于一个简单的原理:在一个正态分布的数据集中,大部分数据应该紧密地围绕在均值附近,并且大约68%的数据应该落在均值的一个标准差范围内,约95%的数据落在两个标准差范围内,而几乎全部(99.7%)的数据应该在三个标准差范围内。因此,超出这个范围的数据点可以被视为潜在的异常值。

Z-Score的计算公式为:
[ Z = \frac{(X - \mu)}{\sigma} ]
其中:

  • ( X ) 是单个原始数据值。
  • ( \mu ) 是总体均值。
  • ( \sigma ) 是总体标准差。

使用Z-Score识别异常值的步骤:

  1. 计算数据集的均值(( \mu ))和标准差(( \sigma ))。
  2. 对于数据集中的每个数据点,计算其Z-Score。
  3. 确定阈值,常用的阈值是3(即数据点的Z-Score小于-3或大于3则被认为是异常值)。

Z-Score方法的优点:

  • 简单易行,容易理解和计算。
  • 对于正态分布的数据,Z-Score提供了一种直观的方式来识别异常值。

Z-Score方法的缺点:

  • 它假设数据是正态分布的,对于非正态分布的数据,Z-Score可能不够有效。
  • 在小样本数据集中,由于样本均值和标准差可能不准确地估计总体参数,Z-Score可能不准确。
  • 它不能提供异常值产生的原因,可能需要进一步的分析来确定异常值是否由错误或其他重要因素造成。

在实际应用中,Z-Score方法通常与其他方法(如IQR法)结合使用,以提高异常值检测的准确性和可靠性。在处理异常值时,应谨慎行事,因为有时候异常值可能代表了重要的信息。

相关文章
|
存储 算法 索引
RLE格式分割标注文件表示
RLE格式分割标注文件表示
1495 0
|
Linux
Linux drwxr-xr-x含义及文件权限查看和修改方法
Linux drwxr-xr-x含义及文件权限查看和修改方法
3424 0
|
数据可视化 数据挖掘 BI
python数据分析和可视化【2】鸢尾花数据分析
python数据分析和可视化【2】鸢尾花数据分析
579 0
|
5月前
|
人工智能 缓存 安全
阿里云发布《AI 原生应用架构白皮书》
阿里云联合阿里巴巴爱橙科技,共同发布《AI 原生应用架构白皮书》,围绕 AI 原生应用的 DevOps 全生命周期,从架构设计、技术选型、工程实践到运维优化,对概念和重难点进行系统的拆解,并尝试提供一些解题思路。白皮书覆盖 AI 原生应用的 11 大关键要素,获得 15 位业界专家联名推荐,来自 40 多位一线工程师实践心的,全书合计超 20w 字,分为 11 章。
2997 43
成功解决A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,co
成功解决A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,co
|
存储 数据采集 监控
云上数据安全保护:敏感日志扫描与脱敏实践详解
随着企业对云服务的广泛应用,数据安全成为重要课题。通过对云上数据进行敏感数据扫描和保护,可以有效提升企业或组织的数据安全。本文主要基于阿里云的数据安全中心数据识别功能进行深入实践探索。通过对商品购买日志的模拟,分析了如何使用阿里云的工具对日志数据进行识别、脱敏(3 种模式)处理和基于 StoreView 的查询脱敏方式,从而在保障数据安全的同时满足业务需求。通过这些实践,企业可以有效降低数据泄漏风险,提升数据治理能力和系统安全性。
1851 228
云上数据安全保护:敏感日志扫描与脱敏实践详解
|
数据采集
IQR法(四分位距法)
IQR法(四分位距法)
|
数据挖掘 数据处理 Python
​掌握Pandas中的rolling窗口,轻松处理时间序列数据
​掌握Pandas中的rolling窗口,轻松处理时间序列数据
1016 2
|
存储 数据可视化 数据管理
在ArcGIS Pro中使用栅格函数
在ArcGIS Pro中使用栅格函数
686 1