评估数据集CGoDial问题之主流生成伪OOD样本的问题如何解决

简介: 评估数据集CGoDial问题之主流生成伪OOD样本的问题如何解决

问题一:封闭世界假设对意图识别的影响是什么?

封闭世界假设对意图识别的影响是什么?


参考回答:

封闭世界假设认为数据是静态的,且只考虑一个固定的意图集合。然而,在实际应用中,用户可能会提出未经过训练的未知意图,这导致封闭世界假设不成立,从而限制了意图识别系统的泛化能力。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655733


问题二:为什么Out-of-Domain (OOD) 检测对意图识别系统很重要?

为什么Out-of-Domain (OOD) 检测对意图识别系统很重要?


参考回答:

Out-of-Domain (OOD) 检测对意图识别系统很重要,因为它可以使系统不仅能够正确分类出已知In-Domain (ID) 的意图,还能检测出未知的OOD意图。这有助于提升系统的鲁棒性和用户体验。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655734


问题三:在OOD检测中,生成伪OOD样本的主要技术挑战是什么?

在OOD检测中,生成伪OOD样本的主要技术挑战是什么?


参考回答:

在OOD检测中,生成伪OOD样本的主要技术挑战是缺乏足够的OOD样本。在训练阶段从测试分布采样并标注OOD样本通常是非常困难的。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655735


问题四:主流生成伪OOD样本的方法有哪些?

主流生成伪OOD样本的方法有哪些?


参考回答:

主流生成伪OOD样本的方法包括Phrase Distortion(对ID样本中的短语做选择性的扰动和替换)、Feature mixup(通过对ID样本的特征做混合生成OOD特征样本)和Latent generation(从ID样本的低密度空间采样OOD样本)。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655736


问题五:为什么使用one-hot硬标签的伪OOD样本可能导致训练效果下降?

为什么使用one-hot硬标签的伪OOD样本可能导致训练效果下降?


参考回答:

使用one-hot硬标签的伪OOD样本可能导致训练效果下降,因为这样的标签设定可能导致伪OOD样本与ID样本有交叉,而实际上“难”的OOD样本(即与ID样本分布最接近的OOD样本)可能含有已知ID意图。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/655737

相关文章
|
7月前
|
SQL 自然语言处理 算法
评估数据集CGoDial问题之计算伪OOD样本的软标签的问题如何解决
评估数据集CGoDial问题之计算伪OOD样本的软标签的问题如何解决
|
8月前
|
机器学习/深度学习 存储 数据可视化
谷歌的时间序列预测的基础模型TimesFM详解和对比测试
在本文中,我们将介绍模型架构、训练,并进行实际预测案例研究。将对TimesFM的预测能力进行分析,并将该模型与统计和机器学习模型进行对比。
241 2
|
7月前
|
SQL 自然语言处理 算法
预训练模型STAR问题之计算伪OOD样本的软标签的问题如何解决
预训练模型STAR问题之计算伪OOD样本的软标签的问题如何解决
|
7月前
|
UED
预训练模型STAR问题之主流生成伪OOD样本的方法有哪些
预训练模型STAR问题之主流生成伪OOD样本的方法有哪些
|
8月前
|
机器学习/深度学习 算法 前端开发
集成学习(Ensemble Learning)是一种机器学习技术,它通过将多个学习器(或称为“基学习器”、“弱学习器”)的预测结果结合起来,以提高整体预测性能。
集成学习(Ensemble Learning)是一种机器学习技术,它通过将多个学习器(或称为“基学习器”、“弱学习器”)的预测结果结合起来,以提高整体预测性能。
|
10月前
R语言估计多元标记的潜过程混合效应模型(lcmm)分析心理测试的认知过程
R语言估计多元标记的潜过程混合效应模型(lcmm)分析心理测试的认知过程
|
机器学习/深度学习 自然语言处理 算法
少样本学习综述:技术、算法和模型
少样本学习(FSL)是机器学习的一个子领域,它解决了只用少量标记示例学习新任务的问题
857 0
|
算法 计算机视觉
Two-Stage目标检测困难负样本如何利用?大小目标如何同时优化?nRPN给你答案!
Two-Stage目标检测困难负样本如何利用?大小目标如何同时优化?nRPN给你答案!
182 0
|
机器学习/深度学习 算法 Python
数学建模国赛:python机器学习基础之训练集和测试集拆分、算法精确率评估
数学建模国赛:python机器学习基础之训练集和测试集拆分、算法精确率评估
234 0
数学建模国赛:python机器学习基础之训练集和测试集拆分、算法精确率评估
|
安全 计算机视觉 异构计算
ESimCSE:无监督语义新SOTA,引入动量对比学习扩展负样本,效果远超SimCSE)(一)
ESimCSE:无监督语义新SOTA,引入动量对比学习扩展负样本,效果远超SimCSE)(一)
608 0
ESimCSE:无监督语义新SOTA,引入动量对比学习扩展负样本,效果远超SimCSE)(一)