DolphinScheduler3.2.1 伪集群部署[二]

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
简介: DolphinScheduler3.2.1 伪集群部署[二]

DolphinScheduler 伪集群部署

伪集群部署目的是在单台机器部署 DolphinScheduler 服务,该模式下 master、worker、api server 都在同一台机器上

如果你是新手,想要体验 DolphinScheduler 的功能,推荐使用Standalone方式体检。如果你想体验更完整的功能,或者更大的任务量,推荐使用伪集群部署。如果你是在生产中使用,推荐使用集群部署或者kubernetes

前置准备工作

伪分布式部署 DolphinScheduler 需要有外部软件的支持

  • JDK:下载JDK (1.8+),安装并配置 JAVA_HOME 环境变量,并将其下的 bin 目录追加到 PATH 环境变量中。如果你的环境中已存在,可以跳过这步。
  • 二进制包:在下载页面下载 DolphinScheduler 二进制包
  • 数据库:PostgreSQL (8.2.15+) 或者 MySQL (5.7+),两者任选其一即可,如 MySQL 则需要 JDBC Driver 8.0.16
  • 注册中心:ZooKeeper (3.8.0+),下载地址
  • 进程树分析
  • macOS 安装pstree
  • Fedora/Red/Hat/CentOS/Ubuntu/Debian 安装psmisc

*注意: DolphinScheduler 本身不依赖 Hadoop、Hive、Spark,但如果你运行的任务需要依赖他们,就需要有对应的环境支持

准备 DolphinScheduler 启动环境

配置用户免密及权限

创建部署用户,并且一定要配置 sudo 免密。以创建 dolphinscheduler 用户为例

# 创建用户需使用 root 登录
useradd dolphinscheduler
# 添加密码
echo "dolphinscheduler" | passwd --stdin dolphinscheduler
# 配置 sudo 免密
sed -i '$adolphinscheduler  ALL=(ALL)  NOPASSWD: NOPASSWD: ALL' /etc/sudoers
sed -i 's/Defaults    requirett/#Defaults    requirett/g' /etc/sudoers
# 修改目录权限,使得部署用户对二进制包解压后的 apache-dolphinscheduler-*-bin 目录有操作权限
chown -R dolphinscheduler:dolphinscheduler apache-dolphinscheduler-*-bin
chmod -R 755 apache-dolphinscheduler-*-bin

*注意:

  • 因为任务执行服务是以 sudo -u {linux-user} 切换不同 linux 用户的方式来实现多租户运行作业,所以部署用户需要有 sudo 权限,而且是免密的。初学习者不理解的话,完全可以暂时忽略这一点
  • 如果发现 /etc/sudoers 文件中有 “Defaults requirett” 这行,也请注释掉

配置机器 SSH 免密登陆

由于安装的时候需要向不同机器发送资源,所以要求各台机器间能实现 SSH 免密登陆。配置免密登陆的步骤如下

su dolphinscheduler
ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa
cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
chmod 600 ~/.ssh/authorized_keys

*注意: 配置完成后,可以通过运行命令 ssh localhost 判断是否成功,如果不需要输入密码就能 ssh 登陆则证明成功

启动 zookeeper

进入 zookeeper 的安装目录,将 zoo_sample.cfg 配置文件复制到 conf/zoo.cfg,并将 conf/zoo.cfg 中 dataDir 中的值改成 dataDir=./tmp/zookeeper

# 启动 zookeeper
./bin/zkServer.sh start

修改相关配置

完成基础环境的准备后,需要根据你的机器环境修改配置文件。配置文件可以在目录 bin/env 中找到,他们分别是 并命名为 install_env.shdolphinscheduler_env.sh

修改 install_env.sh 文件

文件 install_env.sh 描述了哪些机器将被安装 DolphinScheduler 以及每台机器对应安装哪些服务。您可以在路径 bin/env/install_env.sh 中找到此文件,可通过以下方式更改 env 变量,export <ENV_NAME>=,配置详情如下。

# ---------------------------------------------------------
# INSTALL MACHINE
# ---------------------------------------------------------
# Due to the master, worker, and API server being deployed on a single node, the IP of the server is the machine IP or localhost
ips="localhost"
sshPort="22"
masters="localhost"
workers="localhost:default"
alertServer="localhost"
apiServers="localhost"
# DolphinScheduler installation path, it will auto-create if not exists
installPath=~/dolphinscheduler
# Deploy user, use the user you create in section **Configure machine SSH password-free login**
deployUser="dolphinscheduler"

修改 dolphinscheduler_env.sh 文件

文件 ./bin/env/dolphinscheduler_env.sh 描述了下列配置:

  • DolphinScheduler 的数据库配置,详细配置方法见[初始化数据库]
  • 一些任务类型外部依赖路径或库文件,如 JAVA_HOMESPARK_HOME都是在这里定义的

如果您不使用某些任务类型,您可以忽略任务外部依赖项,但您必须根据您的环境更改 JAVA_HOME、注册中心和数据库相关配置。

# JAVA_HOME, will use it to start DolphinScheduler server
export JAVA_HOME=${JAVA_HOME:-/opt/soft/java}
# Database related configuration, set database type, username and password
export DATABASE=${DATABASE:-postgresql}
export SPRING_PROFILES_ACTIVE=${DATABASE}
export SPRING_DATASOURCE_URL="jdbc:postgresql://127.0.0.1:5432/dolphinscheduler"
export SPRING_DATASOURCE_USERNAME={user}
export SPRING_DATASOURCE_PASSWORD={password}
# DolphinScheduler server related configuration
export SPRING_CACHE_TYPE=${SPRING_CACHE_TYPE:-none}
export SPRING_JACKSON_TIME_ZONE=${SPRING_JACKSON_TIME_ZONE:-UTC}
export MASTER_FETCH_COMMAND_NUM=${MASTER_FETCH_COMMAND_NUM:-10}
# Registry center configuration, determines the type and link of the registry center
export REGISTRY_TYPE=${REGISTRY_TYPE:-zookeeper}
export REGISTRY_ZOOKEEPER_CONNECT_STRING=${REGISTRY_ZOOKEEPER_CONNECT_STRING:-localhost:2181}
# Tasks related configurations, need to change the configuration if you use the related tasks.
export HADOOP_HOME=${HADOOP_HOME:-/opt/soft/hadoop}
export HADOOP_CONF_DIR=${HADOOP_CONF_DIR:-/opt/soft/hadoop/etc/hadoop}
export SPARK_HOME=${SPARK_HOME:-/opt/soft/spark}
export PYTHON_LAUNCHER=${PYTHON_LAUNCHER:-/opt/soft/python}
export HIVE_HOME=${HIVE_HOME:-/opt/soft/hive}
export FLINK_HOME=${FLINK_HOME:-/opt/soft/flink}
export DATAX_LAUNCHER=${DATAX_LAUNCHER:-/opt/soft/datax/bin/python3}
export PATH=$HADOOP_HOME/bin:$SPARK_HOME/bin:$PYTHON_LAUNCHER:$JAVA_HOME/bin:$HIVE_HOME/bin:$FLINK_HOME/bin:$DATAX_LAUNCHER:$PATH

初始化数据库

请参考 [数据源配置] 伪分布式/分布式安装初始化数据库 创建并初始化数据库

启动 DolphinScheduler

使用上面创建的部署用户运行以下命令完成部署,部署后的运行日志将存放在 logs 文件夹内

bash ./bin/install.sh

*注意: 第一次部署的话,可能出现 5 次sh: bin/dolphinscheduler-daemon.sh: No such file or directory相关信息,此为非重要信息直接忽略即可

登录 DolphinScheduler

浏览器访问地址 http://localhost:12345/dolphinscheduler/ui 即可登录系统 UI。默认的用户名和密码是 admin/dolphinscheduler123

启停服务

# 一键停止集群所有服务
bash ./bin/stop-all.sh
# 一键开启集群所有服务
bash ./bin/start-all.sh
# 启停 Master
bash ./bin/dolphinscheduler-daemon.sh stop master-server
bash ./bin/dolphinscheduler-daemon.sh start master-server
# 启停 Worker
bash ./bin/dolphinscheduler-daemon.sh start worker-server
bash ./bin/dolphinscheduler-daemon.sh stop worker-server
# 启停 Api
bash ./bin/dolphinscheduler-daemon.sh start api-server
bash ./bin/dolphinscheduler-daemon.sh stop api-server
# 启停 Alert
bash ./bin/dolphinscheduler-daemon.sh start alert-server
bash ./bin/dolphinscheduler-daemon.sh stop alert-server

*注意 1:: 每个服务在路径 <service>/conf/dolphinscheduler_env.sh 中都有 dolphinscheduler_env.sh 文件,这是可以为微 服务需求提供便利。意味着您可以基于不同的环境变量来启动各个服务,只需要在对应服务中配置 <service>/conf/dolphinscheduler_env.sh 然后通过 <service>/bin/start.sh 命令启动即可。但是如果您使用命令 /bin/dolphinscheduler-daemon.sh start <service> 启动服务器,它将会用文件 bin/env/dolphinscheduler_env.sh 覆盖 <service>/conf/dolphinscheduler_env.sh 然后启动服务,目的是为了减少用户修改配置的成本.

*注意 2::服务用途请具体参见《系统架构设计》小节。Python gateway service 默认与 api-server 一起启动,如果您不想启动 Python gateway service 请通过更改 api-server 配置文件 api-server/conf/application.yaml 中的 python-gateway.enabled : false 来禁用它。

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
目录
相关文章
|
7月前
|
调度 Apache
airflow scheduler -D 是什么作用
【6月更文挑战第30天】airflow scheduler -D 是什么作用
121 1
|
分布式计算 关系型数据库 MySQL
DolphinScheduler安装部署
DolphinScheduler安装部署
1331 0
|
机器学习/深度学习 资源调度 Kubernetes
进击的Kubernetes调度系统(三):支持批任务的Binpack Scheduling
阿里云容器服务团队结合多年Kubernetes产品与客户支持经验,对Kube-scheduler进行了大量优化和扩展,逐步使其在不同场景下依然能稳定、高效地调度各种类型的复杂工作负载。 《进击的Kubernetes调度系统》系列文章将把我们的经验、技术思考和实现细节全面地展现给Kubernetes用户和开发者,期望帮助大家更好地了解Kubernetes调度系统的强大能力和未来发展方向。
4013 11
|
5月前
|
Kubernetes 负载均衡 API
在K8S中,apiservice与kube-schedule高可用原理?
在K8S中,apiservice与kube-schedule高可用原理?
|
5月前
|
分布式计算 Hadoop 关系型数据库
dolphinscheduler搭建
先根据伪集群来部署、部署中参考非伪集群 1、mysql数据库 mysql -h主机地址 -u用户名 -p 2、查看等 less:G、上下按键、ctrl+b、ctrl+f、q find / -iname '*mysql*' 更改目录所有者 chown -R dolphinscheduler:dolphinscheduler apache-dolphinscheduler-*-bin /usr/apache-dolphinscheduler-3.1.0-bin/tools/libs 里面也需要mysql驱动
86 1
|
6月前
|
Kubernetes 数据库 容器
DolphinScheduler3.2.1 集群部署(Cluster)[三]
DolphinScheduler3.2.1 集群部署(Cluster)[三]
109 0
|
6月前
|
存储 关系型数据库 Java
极速体验DolphinScheduler 3.2.1 Standalone 版[一]
极速体验DolphinScheduler 3.2.1 Standalone 版[一]
76 0
|
7月前
|
存储 调度 Apache
airflow scheduler 这些命令是什么作用
【6月更文挑战第30天】airflow scheduler 这些命令是什么作用
60 0
|
8月前
|
Kubernetes 监控 调度
|
8月前
|
分布式计算 Ubuntu 调度
如何本地搭建开源分布式任务调度系统DolphinScheduler并远程访问
如何本地搭建开源分布式任务调度系统DolphinScheduler并远程访问
270 0