Problem Description
soda has a set S with n integers {1,2,…,n}. A set is called key set if the sum of integers in the set is an even number. He wants to know how many nonempty subsets of S are key set.
Input
There are multiple test cases. The first line of input contains an integer T (1≤T≤105), indicating the number of test cases. For each test case:
The first line contains an integer n (1≤n≤109), the number of integers in the set.
Output
For each test case, output the number of key sets modulo 1000000007.
Sample Input
4
1
2
3
4
Sample Output
0
1
3
7
题目大意:给你一个数m,然后有m个数,这个数有多少个和是偶数的集合,e:给你3,集合有{1},{1,2},{1,3},
{1,2,3},{2},{2,3},{3}
然而和是偶数的只有{1,2},{1,3},{2,3};
解题思路:推出公式; ans=2 ^ (m-1) - 1;
下面上代码:
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int mod = 1000000007;
typedef long long LL;
LL quick(int m)
{
m-=1;
LL ans=1;
LL tmp=2;
while(m)
{
if(m&1)
{
ans=ans*tmp%mod;
m--;
}
tmp=(tmp*tmp)%mod;
m>>=1;
}
return ans;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int m;
scanf("%d",&m);
printf("%lld\n",quick(m)-1);
}
return 0;
}