Dataphin功能Tips系列(7)-维表版本策略

本文涉及的产品
智能数据建设与治理Dataphin,200数据处理单元
简介: 在创建普通维度逻辑表和事实逻辑表关联维度时,如何配置维表版本策略?
  • 场景

在创建普通维度逻辑表事实逻辑表关联维度时,如何配置维表版本策略?

  • 解决方案及功能

维表版本策略定义主表(当前维度逻辑表)与关联维度逻辑表的分区,默认使用与当前维度逻辑表相同调度周期。更多说明如下:

  • 使用同周期维度(主表与维表使用同周期分区) :主表和关联维度逻辑表计算时使用相同周期的时间分区。例如,业务日期是20220110,需要查询主表的ds=20220101分区的数据,同时关联维度逻辑表的时间分区也是2020101,则就需要选择为使用同周期维表。
  • 使用最新维表(维表使用最新分区) :数据计算时使用最新关联维度逻辑表的最新分区。例如,某商品类目经常会调整,10天前是手机类目,今天是电器类目。如果业务上需要按照电器类目重跑10天前的数据,则维表版本策略需要选择为使用最新维表(维表使用最新分区)

相关文章
|
4月前
|
分布式计算 运维 API
针对MaxCompute经典网络域名下线,Dataphin应对策略的公告
针对MaxCompute经典网络域名下线,Dataphin应对策略的公告
319 7
|
5月前
|
数据处理 调度
Dataphin功能Tips系列(31)-自定义资源组
某零售企业最近在做促销活动,希望保证某些数据处理任务(订单处理、库存更新)任务能够快速按时完成,如何保证这些高优任务的调度资源不被其他任务占用,能按时执行?
104 0
|
5月前
|
运维 数据处理 调度
Dataphin功能Tips系列(30)-限流配置
某大型电商平台在每天的凌晨时段需要进行大量的数据处理任务,比如订单处理、库存同步、用户行为分析等。此外,平台还需要定期进行历史数据的补数据工作,以确保数据完整性和一致性。在进行补数据时,如果需要补的历史时间周期比较长,这些批处理任务会消耗大量的计算资源,导致批处理任务(如订单处理、库存同步)响应变慢甚至超时失败,这是我们应该怎么保障每天的批处理任务(订单处理、库存同步)的按时产出?
|
5月前
Dataphin功能Tips系列(29)-计算任务版本对比/版本回滚
开发人员小张先前编写的一个脚本,在进行了修订之后,发现逻辑出现了偏差,但他已经不记得前一版本的具体内容了。在这种情况下,应该怎样通过版本对比来看出两版脚本之间的差别,并且回滚到之前的版本呢?
|
5月前
|
调度 Python
Dataphin功能Tips系列(28)-跨节点参数
某经销零售企业,需要每天定时查询供应商的某个服务,以确认产品目录是否有变更,如果有变更,则全量拉取最新目录数据(数据量比较大,拉取一次成本很高),如果无变更则继续沿用上一次拉取的数据,在dataphin如何实现?
|
5月前
Dataphin功能Tips系列(27)-排他编辑锁
在实际开发中,为了避免多人同时编辑同一份代码而导致的问题,通常会采用锁机制来保护代码。然而,普通的锁机制有时并不能完全阻止其他开发人员在编辑时抢占锁,这使得用户可互相覆盖锁定状态,在dataphin中如何解决这一问题?
Dataphin功能Tips系列(27)-排他编辑锁
|
5月前
|
数据处理 调度
Dataphin功能Tips系列(26)-事实逻辑表配置数据延迟
零售行业中,订单数据是每天晚上由pos系统同步至数据中台,但门店人员经常会没有及时将订单信息录入pos,也许隔天或是隔几天才录入,这会导致指标的不准确性,数据中台的开发人员往往需要进行批量补历史分区的数据,这时怎么才能减轻开发人员的工作,让系统能够自动补前几天分区中的事实逻辑表中的数据呢?
112 0
|
2月前
|
数据采集 SQL 人工智能
瓴羊Dataphin:AI驱动的数据治理——千里之行,始于标准 |【瓴羊数据荟】数据MeetUp第三期
数据标准是数据治理的核心抓手,通过梳理数据标准可以有效提升数据质量。瓴羊Dataphin平台利用AI技术简化数据治理流程,实现自动化的数据标准建立、质量规则构建和特征识别,助力企业在大模型时代高效治理数据,推动数据真正为业务服务。
388 28
瓴羊Dataphin:AI驱动的数据治理——千里之行,始于标准 |【瓴羊数据荟】数据MeetUp第三期
|
3月前
|
数据采集 自然语言处理 供应链
央国企“严选”的瓴羊,如何让数据“供得出、流得动、用得好”?|【瓴羊Dataphin在信通院2024数据资产管理大会】
在产业变革新浪潮下,数据资产管理步入“繁花时代”,瓴羊高级解决方案专家黄彦之出席2024数据资产管理大会并分享了瓴羊基于12年阿里最佳数据实践,通过Dataphin等产品助力央国企数智化转型的路径与方法。大会发布《数据治理产业图谱3.0》,瓴羊Dataphin入选BUCM板块代表产品,彰显其领先经验。
165 18
|
4月前
|
安全 Java 数据库连接
Dataphin的数据共享的应用场景和方案
不同的业务场景对数据访问和使用有着各自独特的需求,从简单的数据下载到复杂的跨系统集成,选择合适的数据共享与访问方式至关重要。本文旨在探讨几种常见的Dataphin上的数据共享与访问机制——包括数据复制、数据下载、视图创建、行级及列级权限控制、API数据服务以及JDBC连接等,并分析它们各自的适用场景、优势及限制,以帮助企业更好地根据自身需求做出合理的选择。
180 0

热门文章

最新文章