【Rust】——所有权规则、内存分配

简介: 【Rust】——所有权规则、内存分配

🎯所有权规则

重要:

  1. Rust 中的每一个值都有一个 所有者owner)。
  2. 值在任一时刻有且只有一个所有者。
  3. 当所有者(变量)离开作用域,这个值将被丢弃。


🎯变量作用域

作用域scope)。作用域是一个项(item)在程序中有效的范围。

    {                      // s 在这里无效,它尚未声明
        let s = "hello";   // 从此处起,s 是有效的
 
        // 使用 s
    }                      // 此作用域已结束,s 不再有效

换句话说,这里有两个重要的时间点:

  • s 进入作用域 时,它就是有效的。
  • 这一直持续到它 离开作用域 为止。

目前为止,变量是否有效与作用域的关系跟其他编程语言是类似的。


🎯String类型

String比哪些基础的标量数据类型更复杂。

字符串字面值:程序里手写的哪些字符串值:

  • 他们是不可变的。
  • 非所有字符串的值都能在编写代码时就知道

这个类型管理被分配到堆上的数据,所以能够存储在编译时未知大小的文本。

let s = String::from("hello");

这两个冒号 :: 是运算符,允许将特定的 from 函数置于 String 类型的命名空间(namespace)下,而不需要使用类似 string_from 这样的名字。

    let mut s = String::from("hello");
 
    s.push_str(", world!"); // push_str() 在字符串后追加字面值
 
    println!("{}", s); // 将打印 `hello, world!`


🎯内存和分配

       就字符串字面值来说,我们在编译时就知道其内容,所以文本被直接硬编码进最终的可执行文件中。这使得字符串字面值快速且高效。不过这些特性都只得益于字符串字面值的不可变性。

       对于 String 类型,为了支持一个可变,可增长的文本片段,需要在堆上分配一块在编译时未知大小的内存来存放内容。这意味着:

  • 必须在运行时向内存分配器(memory allocator)请求内存。
  • 需要一个当我们处理完 String 时将内存返回给分配器的方法。

       Rust 采取了一个不同的策略:内存在拥有它的变量离开作用域后就被自动释放。


       当变量离开作用域,Rust 为我们调用一个特殊的函数。这个函数叫做 drop,在这里 String 的作者可以放置释放内存的代码。Rust 在结尾的 } 处自动调用 drop。


🎯变量和数据交互的方式:移动(Move)

在 Rust 中,多个变量可以采取不同的方式与同一数据进行交互。

    let x = 5;
    let y = x;

       这也正是事实上发生了的,因为整数是有已知固定大小的简单值,所以这两个 5 被放入了栈中。

1. let s1 = String::from("hello");
2. let s2 = s1;

       这看起来与上面的代码非常类似,所以我们可能会假设它们的运行方式也是类似的:也就是说,第二行可能会生成一个 s1 的拷贝并绑定到 s2 上。不过,事实上并不完全是这样。


       如下图所示:一个指向存放字符串内容内存的指针,一个长度,和一个容量。这一组数据存储在栈上。右侧则是堆上存放内容的内存部分。

ea74e50d0df0044f62350beec12bdcf5_0874454abf3447eab7dc5318cb907529.png

       我们将 s1 赋值给 s2String 的数据被复制了,这意味着我们从栈上拷贝了它的指针、长度和容量。我们并没有复制指针指向的堆上数据。

重点:之前我们提到过当变量离开作用域后,Rust 自动调用 drop 函数并清理变量的堆内存。不过图展示了两个数据指针指向了同一位置。这就有了一个问题:当 s2 和 s1 离开作用域,它们都会尝试释放相同的内存。这是一个叫做 二次释放(double free)的错误,也是之前提到过的内存安全性 bug 之一。两次释放(相同)内存会导致内存污染,它可能会导致潜在的安全漏洞。


       不过因为 Rust 同时使第一个变量无效了,这个操作被称为 移动move),而不是叫做浅拷贝。

       因为只有 s2 是有效的,当其离开作用域,它就释放自己的内存,完毕。


🎯变量和数据交互的方式:克隆(clone)

    let s1 = String::from("hello");
    let s2 = s1.clone();
 
    println!("s1 = {}, s2 = {}", s1, s2);

       原因是像整型这样的在编译时已知大小的类型被整个存储在栈上,所以拷贝其实际的值是快速的。这意味着没有理由在创建变量 y 后使 x 无效。换句话说,这里没有深浅拷贝的区别,所以这里调用 clone 并不会与通常的浅拷贝有什么不同。

       任何一组简单标量值的组合都可以实现 Copy,任何不需要分配内存或某种形式资源的类型都可以实现 Copy 。如下是一些 Copy 的类型:

  • 所有整数类型,比如 u32
  • 布尔类型,bool,它的值是 truefalse
  • 所有浮点数类型,比如 f64
  • 字符类型,char
  • 元组,当且仅当其包含的类型也都实现 Copy 的时候。比如,(i32, i32) 实现了 Copy,但 (i32, String) 就没有。
目录
相关文章
|
2月前
|
Rust 安全 程序员
Rust与C++:内存管理与安全性的比较
本文将对Rust和C++两种编程语言在内存管理和安全性方面进行深入比较。我们将探讨Rust如何通过其独特的所有权系统和生命周期管理来消除内存泄漏和悬挂指针等常见问题,并对比C++在这方面的挑战。此外,我们还将讨论Rust的类型系统和编译器如何在编译时捕获许多常见的运行时错误,从而提高代码的安全性。
|
2月前
|
Rust 安全 编译器
Rust中的生命周期与借用检查器:内存安全的守护神
本文深入探讨了Rust编程语言中生命周期与借用检查器的概念及其工作原理。Rust通过这些机制,在编译时确保了内存安全,避免了数据竞争和悬挂指针等常见问题。我们将详细解释生命周期如何管理数据的存活期,以及借用检查器如何确保数据的独占或共享访问,从而在不牺牲性能的前提下,为开发者提供了强大的内存安全保障。
|
1月前
|
Rust 算法 安全
【Rust中的所有权系统深入解析】A Deep Dive into Rust‘s Ownership System
【Rust中的所有权系统深入解析】A Deep Dive into Rust‘s Ownership System
30 0
|
1月前
|
Rust 编译器
【Rust】——函数(所有权)以及借用或引用
【Rust】——函数(所有权)以及借用或引用
22 0
|
1月前
|
存储 缓存 Rust
【Rust】——所有权:Stack(栈内存)vs Heap(堆内存)(重点)
【Rust】——所有权:Stack(栈内存)vs Heap(堆内存)(重点)
22 0
|
2月前
|
Rust 安全 开发者
Rust的安全特性概览:守护内存安全与空指针的终结者
Rust作为一种系统级编程语言,以其独特的内存安全特性和对空指针的严格管理,为开发者提供了更加稳健和安全的编程环境。本文将对Rust的内存安全机制、空指针处理策略以及其他安全特性进行概览,旨在展示Rust如何帮助开发者构建更加安全和可靠的软件系统。
|
2月前
|
存储 Rust 安全
Rust中避免不必要的内存分配与复制的优化策略
在Rust编程语言中,内存分配与复制是常见的性能瓶颈。本文深入探讨了如何在Rust中避免不必要的内存分配和复制,包括使用栈分配、借用与所有权、智能指针、以及零拷贝策略等。通过理解这些概念并应用相应的优化策略,Rust开发者可以显著提高代码的性能和效率。
|
2月前
|
Rust 安全 编译器
深入Rust的所有权系统:理解变量的所有权
本文详细探讨了Rust编程语言中所有权系统的核心概念,包括变量的所有权、生命周期、借用规则和内存安全。通过理解这些概念,我们能够编写出更加高效、安全和可维护的Rust代码。
|
1月前
|
存储 JSON 监控
Higress Controller**不是将配置信息推送到Istio的内存存储里面的**。
【2月更文挑战第30天】Higress Controller**不是将配置信息推送到Istio的内存存储里面的**。
14 1
|
2天前
|
存储 算法
【三种方法】求一个整数存储在内存中二进制中的1的个数附两道课外练习题
【三种方法】求一个整数存储在内存中二进制中的1的个数附两道课外练习题
7 0