网络原理-TCP_IP(6)

简介: 网络原理-TCP_IP(6)

网络层

在复杂的网络环境中确定一个合适的路径.

IP协议

TCP协议并列,都是网络体系中最核心的协议.

基本概念

主机:配有IP地址,但是不进行路由控制的设备;

路由器:即配有IP地址,又能进行路由控制;

节点:主机和路由器的统称;

协议头格式

4位版本号(version):指定IP协议的版本,对于IPv4来说,就是4.(只有两种:IPv4,IPv6).

4位头部长度(header length):IP头部的长度是多少个32bit,也就是length * 4的字节数,4bit表达的最大数字为15,因此IP的最大长度是60字节.(IP报头也是可以变长的).

8位服务类型(Type Of Sevice):3位优先权字段(已经弃用),4位TOS字段和一位保留字段(必须置为0).4位TOS分别表示:最小延时(吃饭快),最大吞吐量(吃饭多),最高可靠性(IP并非是像TCP一样提供了强可靠性,但是内部也有考虑,减小了丢包率),最小成本(硬件设备的开销).这四者互相冲突,只能选择一个.

16位总长度(total length):IP数据整体占多少字节.(即报头+载荷,虽然IP有长度限制,但也提供了拆包和组包的功能).

16位标识(id):唯一的标识主机发送的报文.如果报文在数据链路层被分片了,那么每一个片中的id都是相同的.(哪些数据应该在一起组装).

3位标志字段:第一位保留(保留的意思是现在不用,但是说不定以后要用到).第二位置为1表示禁止分片,这时候如果报文长度超过MTU,IP模块就会丢弃报文.第三位表示"更多分片",如果分片了话,最后一个分片置为1,其它是0,类似一个结束标记.

13位分片偏移(framegament offset):是分片相对于原始IP报文开始处的偏移.其实就是表示当前分片在原报文中的哪个位置,实际偏移的字节数是这个值*8得到的.因此,除了最后一个报文之外,其它报文的长度必须是8的整数倍(否则报文就不连续了).(组装包的先后顺序).

8位生存时间(Time To Live,TTL):数据报到达目的地的最大报文次数,一般是64.每次经过一个路由,TTL-=1,一直减到0还没有到达,那么就丢弃了,这个字段主要是为了防止路由循环.(小提示:在cmd窗口中使用tracert + 网络名指令)可以看到当前的网络路径是怎样的.

8位协议:表示上层协议的类型(传输层使用哪个协议).

16位头部校验和:使用CRC进行校验,来鉴别头部是否损坏.(不管载荷).

32位源地址和32位目标地址:表示发送端和接收端.(最关键的地方)采用的是点分十进制,3个点分成4个部分,每个部分1字节(0~255). -> IPv4. 希望每一个网络都有一个唯一的IP地址.(数值达到了2^32,约42亿9千万->可能不够用).

选项字段(不定长,最多40字节):略.

地址管理

定义:使用一套地址体系(IP地址),来描述互联网上每个设备所处的位置.(不仅仅是电脑/手机,路由器,服务器也有IP地址).

网段划分

网段划分是为了方便组网,因为比如公司,学校等人多,上网设备也多,网络环境复杂.

IP地址分为两个部分,网络号和主机号.

网络号:保证相互连接的两个网段具有不同的标识;

主机号:同一网段中,主机之间具有相同的网络号,但是必须由不同的主机号;

注意:两个相邻的局域网,网络号不能相同(一个路由器连接的网络就是相邻的).

不同的子网其实就是把网络号相同的主机放到一起;

如果在子网中新增一台主机,则这台主机的网络号和这个子网的网络号是一致的,但是主机号必须不能和子网中的其它主机重复.

通过合理设置主机号和网络号,就可以保证在相互连接的网络中,每台主机的IP地址都不相同.

那么问题来了,手动管理子网内的IP,是一个相当麻烦的事情.

有一种技术叫做DHCP,能够自动给子网内新增主机结点分配IP地址,避免了手动管理IP的不便

一般路由器都带有DHCP功能,因此路由器也可以看作是一个DHCP服务器.

过去(上古时期)曾经提出一种划分网络和主机号的方案(直接通过IP的前缀来起到设置网段的效果),把所有IP地址分为5类,如下图所示.

• A类 0.0.0.0到127.255.255.255

• B类 128.0.0.0到191.255.255.255

• C类 192.0.0.0到223.255.255.255

• D类 224.0.0.0到239.255.255.255

• E类 240.0.0.0到247.255.255.255

随着互联网的快速发展,这种划分方案的局限性很快就体现了出来,大多数组织都申请B类网络地址,导致B类地址很快就消耗完了,而A类却浪费了大量的地址;(比较死板)

例如,申请了一个B类地址,理论上一个子网内能允许6w5k多个主机.A类地址的子网内的主机数中更多.

然而实际的网络架设中,不会存在一个子网内中有这么多个情况.因此大量的IP地址都被浪费掉了.

针对这种情况又提出了新的方案,称为CIDR:

引入一个额外的子网掩码(subnet mask)来区分网络号和主机号;

子网掩码也是一个32位的正整数.通常用一段"0"来结尾;

将IP地址和子网掩码进行"按位与"操作,得到的结果就是网络号;

网络号和主机号的划分与这个IP地址是A类,B类,还是C类无关;

特殊的IP地址

将IP地址中的主机地址全部设为0(eg.192.168.0.0),就成为了网络号,代表这个局域网(这个IP比较特殊,不能分配给某个主机).

将IP地址中的主机地址全部设为1(eg.192.168.0.255),就成为了广播地址,用于给同一个链路中相互连接的所有主机发送数据包(UDP);  广播地址:往广播地址上发信息,局域网中所有设备都能收到(一对多的传输).典型场景:手机投屏,电脑投屏.(要求:必须是同一个局域网) .连上wifi点投屏键,就提示了可投屏设备(通过广播完成).

127.*的IP地址(本机)用于本机环回测试,通常是127.0.0.1.

IP地址的数量限制

我们知道,IP地址(IPv4)是一个4字节32位的正整数.那么一共有2的32次方个IP地址,大概是43亿左右.而TCP/IP规定,每个主机都需要有一个IP地址.

这意味着,一共有43亿台主机能接入网络吗?

实际上,由于一些特殊IP地址的存在,数量远不足43亿;另外IP地址并非是按照主机台数来配置的,而是每一个网卡都需要配置一个或多个IP地址.

CIDR在一定程度上缓解了IP地址不够用的问题(提高了利用率,减小了浪费,但是IP地址的绝对上限没有增加),仍然不是很够用.需要用三种方法来解决:

动态分配IP地址:只给接入网络的设备分配IP地址.因此同一个MAC地址的设备,每次接入互联网中,得到的IP地址是不一定相同的;

NAT技术(后面重点介绍);

IPv6:IPv6并不是IPv4的简单升级版,这是两个互不相干的协议,彼此并不兼容;IPv6用16字节128位来表示一个IP地址;但是目前IPv6还没有普及;(IPv6的报头和IPv4是不兼容的,引入IPv6就意味着当前网络设备(路由器不支持),就需要更换为IPv6的设备).

私有IP地址和公网IP地址

如果一个组织内部组建局域网,IP地址只用于局域网中的通信,而不是直接连接到Internet上,理论上,使用任意的IP地址都可以,但是RFC1918规定了用于组建局域网的私有IP地址.

公网设备访问公网设备,没有问题,直接访问即可;

局域网设备访问局域网设备(同一局域网中),没有问题;

局域网设备访问局域网设备(不同局域网当中),不允许访问;

局域网访问公网就要对局域网设备进行IP地址转换;

公网访问局域网设备,不允许访问.

10.*,前8位是网络号,共16777216个地址;

172.16.到172.31.,前12位是网络号,共1048576个地址

192.168.*,前16位是网络号,共65536个地址;

包含在这个范围内的都成为私有IP,其余为全局IP(公网IP);

你的设备只要连接上路由器,此时路由器就会给你自动分配;

一个路由器LAN口连接的主机,都从属于当前这个路由器的子网中;

不同的路由器,子网IP实际上都是一样的(通常是192.168.1.1).子网内的主机IP地址不能重复.但是子网之间的IP地址就可以重复了.

每一个家用路由器,其实又作为运营商路由器的子网中一个结点,这样运营商路由器就会有很多级,最外层的运营商路由器,WAN口IP就是一个公网IP了.

子网内主机需要和外网进行通信时,路由器将IP首部中的IP地址进行替换(替换成WAN口IP),这样逐级替换,最终数据包中的IP地址成为一个公网IP.(NAT技术).

如果希望我们自己实现的服务器程序,能够在公网中被访问到,就需要把程序部署在一台具有外网IP的服务器上.这样的服务器可以自行购买.

相关文章
|
1月前
|
机器学习/深度学习 PyTorch TensorFlow
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic,深度学习探索者。深耕TensorFlow与PyTorch,分享框架对比、性能优化与实战经验,助力技术进阶。
|
1月前
|
监控 负载均衡 安全
WebSocket网络编程深度实践:从协议原理到生产级应用
蒋星熠Jaxonic,技术宇宙中的星际旅人,以代码为舟、算法为帆,探索实时通信的无限可能。本文深入解析WebSocket协议原理、工程实践与架构设计,涵盖握手机制、心跳保活、集群部署、安全防护等核心内容,结合代码示例与架构图,助你构建稳定高效的实时应用,在二进制星河中谱写极客诗篇。
WebSocket网络编程深度实践:从协议原理到生产级应用
|
7月前
|
机器学习/深度学习 存储 算法
NoProp:无需反向传播,基于去噪原理的非全局梯度传播神经网络训练,可大幅降低内存消耗
反向传播算法虽是深度学习基石,但面临内存消耗大和并行扩展受限的问题。近期,牛津大学等机构提出NoProp方法,通过扩散模型概念,将训练重塑为分层去噪任务,无需全局前向或反向传播。NoProp包含三种变体(DT、CT、FM),具备低内存占用与高效训练优势,在CIFAR-10等数据集上达到与传统方法相当的性能。其层间解耦特性支持分布式并行训练,为无梯度深度学习提供了新方向。
280 1
NoProp:无需反向传播,基于去噪原理的非全局梯度传播神经网络训练,可大幅降低内存消耗
|
2月前
|
机器学习/深度学习 人工智能 算法
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic带你深入卷积神经网络(CNN)核心技术,从生物启发到数学原理,详解ResNet、注意力机制与模型优化,探索视觉智能的演进之路。
353 11
|
2月前
|
机器学习/深度学习 算法 搜索推荐
从零开始构建图注意力网络:GAT算法原理与数值实现详解
本文详细解析了图注意力网络(GAT)的算法原理和实现过程。GAT通过引入注意力机制解决了图卷积网络(GCN)中所有邻居节点贡献相等的局限性,让模型能够自动学习不同邻居的重要性权重。
419 0
从零开始构建图注意力网络:GAT算法原理与数值实现详解
|
2月前
|
安全 测试技术 虚拟化
VMware-三种网络模式原理
本文介绍了虚拟机三种常见网络模式(桥接模式、NAT模式、仅主机模式)的工作原理与适用场景。桥接模式让虚拟机如同独立设备接入局域网;NAT模式共享主机IP,适合大多数WiFi环境;仅主机模式则构建封闭的内部网络,适用于测试环境。内容简明易懂,便于理解不同模式的优缺点与应用场景。
353 0
|
4月前
|
机器学习/深度学习 人工智能 PyTorch
零基础入门CNN:聚AI卷积神经网络核心原理与工业级实战指南
卷积神经网络(CNN)通过局部感知和权值共享两大特性,成为计算机视觉的核心技术。本文详解CNN的卷积操作、架构设计、超参数调优及感受野计算,结合代码示例展示其在图像分类、目标检测等领域的应用价值。
262 7
|
6月前
|
监控 应用服务中间件 Linux
掌握并发模型:深度揭露网络IO复用并发模型的原理。
总结,网络 I/O 复用并发模型通过实现非阻塞 I/O、引入 I/O 复用技术如 select、poll 和 epoll,以及采用 Reactor 模式等技巧,为多任务并发提供了有效的解决方案。这样的模型有效提高了系统资源利用率,以及保证了并发任务的高效执行。在现实中,这种模型在许多网络应用程序和分布式系统中都取得了很好的应用成果。
198 35
|
6月前
|
机器学习/深度学习 算法 测试技术
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
207 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
|
5月前
|
安全 Java 程序员
分析Muduo网络库源码中的TcpServer组件工作原理
简言之,TcpServer 在 Muduo 中的角色,就是一位终极交通指挥员,它利用现代计算机网络的魔法,确保数据如同车辆一般,在信息高速公路上自由、安全、高效地流动。
75 0

热门文章

最新文章