线程池--JAVA

简介: 而线程池就是用来优化线程频繁创建和销毁的场景,减少线程创建、销毁的频率。

虽然线程是轻量级进程,但是如果当创建和销毁的的频率非常之高,那么它也就会消耗很多的资源。

而线程池就是用来优化线程频繁创建和销毁的场景,减少线程创建、销毁的频率。

ExecutorService

JAVA标准库为我们实现了线程池,ExecutorService是一个接口,线程池的创建并不像平常的接口实现那样直接new,而是使用了“工厂模式”。

publicstaticvoidmain(String[] args) {
//创建有4个线程的线程池ExecutorServiceservice=Executors.newFixedThreadPool(4);
//创建一个可以根据任务数量 来自行调整线程数量 的线程池ExecutorServiceservice1=Executors.newCachedThreadPool();
//创建含有一个线程的线程池ExecutorServiceservice2=Executors.newSingleThreadExecutor();
//创建一个含有3个线程的线程池,该线程池可以调度命令在给定时间后延迟运行ScheduledExecutorServiceservice3=Executors.newScheduledThreadPool(3);
}

image.gif

创建好了之后可以利用submit()方法来给里面添加任务

publicstaticvoidmain(String[] args) {
//创建有4个线程的线程池ExecutorServiceservice=Executors.newFixedThreadPool(4);
//添加5个任务for (inti=0; i<5; i++) {
inta=i;
service.submit(()->{
System.out.println(a);
        });
    }
}

image.gif

image.png

但是第四种创建线程池的方法有点特殊如果你想要实现延时执行任务就需要使用schedule()方法。

publicstaticvoidmain(String[] args) {
// 创建一个定时执行任务的线程池,设置核心线程数为3ScheduledExecutorServiceservice=Executors.newScheduledThreadPool(3);
//打印当前时间System.out.println(System.currentTimeMillis());
// 定时执行任务,延迟2秒后开始执行service.schedule(() -> {
// 执行的任务逻辑System.out.println("任务执行时间:"+System.currentTimeMillis());
        }, 2, TimeUnit.SECONDS);
}

image.gif

image.png

上述这几个创建线程池的方法本质上都是将ThreadPoolExecutor进行了封装。

ThreadPoolExecutor

这个类有4中构造方法,可是仔细看就会发现前三种还是调用的的四种,所以本质上是只有一种。

image.png

各个参数的含义

corePoolSize

当前线程池中的核心线程数即当前线程池在空闲时含有的线程数量,也就是当前线程池包含的线程最少数量。

maximumPoolSize

当前线程池中允许存在的最大线程数。

keepAliveTime

当实际线程数大于核心线程数时,多余的空闲线程能够存活的最长时间。

unit

存活时间的单位。

NANOSECONDS:千分之一微秒;

MICROSECONDS:千分之一毫秒;

MILLISECONDS:千分之一秒;

SECONDS:秒;

MINUTES:分钟;

HOURS:小时;

DAYS:天;

workQueue

用于保存待执行任务的队列。

threadFactory

创建新线程时所用的工厂类。

handler

当线程池中的任务满了之后所使用的拒绝策略。

ThreadPoolExecutor.AbortPolicy:直接抛出异常;

ThreadPoolExecutor.CallerRunsPolicy:新添加的任务,由添加任务的线程执行;

ThreadPoolExecutor.DiscardOldestPolicy :丢弃队列中最老的任务,再将新任务添加进任务队列;

ThreadPoolExecutor.DiscardPolicy:丢弃新添加的任务。

线程池的关闭

想要关闭线程池需要使用shutdown()方法

publicstaticvoidmain(String[] args) {
// 创建一个定时执行任务的线程池,设置核心线程数为3ScheduledExecutorServiceservice=Executors.newScheduledThreadPool(3);
//打印当前时间System.out.println(System.currentTimeMillis());
// 定时执行任务,延迟2秒后开始执行service.schedule(() -> {
// 执行的任务逻辑System.out.println("任务执行时间:"+System.currentTimeMillis());
    }, 2, TimeUnit.SECONDS);
}

image.gif

可以看出任务执行完后程序并没有退出。

image.png

publicstaticvoidmain(String[] args) {
// 创建一个定时执行任务的线程池,设置核心线程数为3ScheduledExecutorServiceservice=Executors.newScheduledThreadPool(3);
//打印当前时间System.out.println(System.currentTimeMillis());
// 定时执行任务,延迟2秒后开始执行service.schedule(() -> {
// 执行的任务逻辑System.out.println("任务执行时间:"+System.currentTimeMillis());
    }, 2, TimeUnit.SECONDS);
//主线程休眠一段时间try {
Thread.sleep(2000); // 休眠2秒    } catch (InterruptedExceptione) {
e.printStackTrace();
    }
// 关闭线程池service.shutdown();
}

image.gif

image.png

接下来为了更好的理解线程池,下面是模拟实现一个含有固定线程数的线程池。

模拟实现

先创建一个类名为MyThreadPool里面含有一个属性,类型为BlockingQueue。

publicclassMyThreadPool {
//队列大小为5privateBlockingQueue<Runnable>queue=newArrayBlockingQueue<>(5);
}

image.gif

写一个只有一个参数的有参构造方法,参数为线程池的线程数。

利用循环创建n个线程,每个线程都不断地从队列中拿任务。

publicMyThreadPool(Integern) {
for (inti=0; i<n; i++) {
Threadt=newThread(()->{
while(true) {
try {
Runnablerunnable=queue.take();
runnable.run();
                } catch (InterruptedExceptione) {
thrownewRuntimeException(e);
                }
            }
        });
t.start();
    }
}

image.gif

写一个submit()方法可以给队列中添加任务。

publicvoidsubmit(Runnablerunnable) {
try {
this.queue.put(runnable);
    } catch (InterruptedExceptione) {
thrownewRuntimeException(e);
    }
}

image.gif

此时一个简单的线程池就完成了,下面来进行一下简单的测试:

publicstaticvoidmain(String[] args) {
MyThreadPoolmyThreadPool=newMyThreadPool(5);
for (inti=0; i<40; i++) {
inta=i;
myThreadPool.submit(()->{
System.out.println(a);
        });
    }
}

image.gif

image.png

完整代码

importjava.util.concurrent.ArrayBlockingQueue;
importjava.util.concurrent.BlockingQueue;
//线程池publicclassMyThreadPool {
privateBlockingQueue<Runnable>queue=newArrayBlockingQueue<>(5);
publicMyThreadPool(Integern) {
for (inti=0; i<n; i++) {
Threadt=newThread(()->{
while(true) {
try {
Runnablerunnable=queue.take();
runnable.run();
                    } catch (InterruptedExceptione) {
thrownewRuntimeException(e);
                    }
                }
            });
t.start();
        }
    }
publicvoidsubmit(Runnablerunnable) {
try {
this.queue.put(runnable);
        } catch (InterruptedExceptione) {
thrownewRuntimeException(e);
        }
    }
}

image.gif


目录
相关文章
|
3月前
|
JSON 网络协议 安全
【Java】(10)进程与线程的关系、Tread类;讲解基本线程安全、网络编程内容;JSON序列化与反序列化
几乎所有的操作系统都支持进程的概念,进程是处于运行过程中的程序,并且具有一定的独立功能,进程是系统进行资源分配和调度的一个独立单位一般而言,进程包含如下三个特征。独立性动态性并发性。
239 1
|
3月前
|
JSON 网络协议 安全
【Java基础】(1)进程与线程的关系、Tread类;讲解基本线程安全、网络编程内容;JSON序列化与反序列化
几乎所有的操作系统都支持进程的概念,进程是处于运行过程中的程序,并且具有一定的独立功能,进程是系统进行资源分配和调度的一个独立单位一般而言,进程包含如下三个特征。独立性动态性并发性。
256 1
|
4月前
|
数据采集 存储 弹性计算
高并发Java爬虫的瓶颈分析与动态线程优化方案
高并发Java爬虫的瓶颈分析与动态线程优化方案
Java 数据库 Spring
210 0
|
4月前
|
算法 Java
Java多线程编程:实现线程间数据共享机制
以上就是Java中几种主要处理多线程序列化资源以及协调各自独立运行但需相互配合以完成任务threads 的技术手段与策略。正确应用上述技术将大大增强你程序稳定性与效率同时也降低bug出现率因此深刻理解每项技术背后理论至关重要.
382 16
|
5月前
|
缓存 并行计算 安全
关于Java多线程详解
本文深入讲解Java多线程编程,涵盖基础概念、线程创建与管理、同步机制、并发工具类、线程池、线程安全集合、实战案例及常见问题解决方案,助你掌握高性能并发编程技巧,应对多线程开发中的挑战。
|
5月前
|
数据采集 存储 前端开发
Java爬虫性能优化:多线程抓取JSP动态数据实践
Java爬虫性能优化:多线程抓取JSP动态数据实践
|
6月前
|
Java API 调度
从阻塞到畅通:Java虚拟线程开启并发新纪元
从阻塞到畅通:Java虚拟线程开启并发新纪元
394 83
|
6月前
|
安全 算法 Java
Java 多线程:线程安全与同步控制的深度解析
本文介绍了 Java 多线程开发的关键技术,涵盖线程的创建与启动、线程安全问题及其解决方案,包括 synchronized 关键字、原子类和线程间通信机制。通过示例代码讲解了多线程编程中的常见问题与优化方法,帮助开发者提升程序性能与稳定性。
312 0
|
6月前
|
存储 Java 调度
Java虚拟线程:轻量级并发的革命性突破
Java虚拟线程:轻量级并发的革命性突破
399 83