嵌入式系统中常见内存的划分方法

简介: 嵌入式系统中常见内存的划分方法

      看到有小伙伴在讨论关于单片机内存的话题,今天就结合STM32给大家描述一下常见的划分区域。

在一个STM32程序代码中,从内存高地址到内存低地址,依次分布着栈区、堆区、全局区(静态区)、常量区、代码区,其中全局区中高地址分布着.bss段,低地址分布着.data段。

总的分布如下所示:

内存高地址

栈区

堆区

.bss段

.data段

常量区

内存低地址

代码区

一、栈区(stack)

  • 临时创建的局部变量存放在栈区。
  • 函数调用时,其入口参数存放在栈区。
  • 函数返回时,其返回值存放在栈区。
  • const定义的局部变量存放在栈区。

2、堆区(heap)

堆区用于存放程序运行中被动态分布的内存段,可增可减。

可以有malloc等函数实现动态分布内存。

有malloc函数分布的内存,必须用free进行内存释放,否则会造成内存泄漏。

3、全局区(静态区)

全局区有.bss段和.data段组成,可读可写。

4、.bss段

未初始化的全局变量存放在.bss段。

初始化为0的全局变量和初始化为0的静态变量存放在.bss段。

.bss段不占用可执行文件空间,其内容有操作系统初始化。

5、.data段

已经初始化的全局变量存放在.data段。

静态变量存放在.data段。

.data段占用可执行文件空间,其内容有程序初始化。

const定义的全局变量存放在.rodata段。

6、常量区

字符串存放在常量区。

常量区的内容不可以被修改。

7、代码区

程序执行代码存放在代码区。

字符串常量也有可能存放在代码区。

通过上面的介绍,可能你对各个数据的存储位置还是很模糊,下面通过一个简单的程序,再来体会理解一下。

通过上面的介绍,可能你对各个数据的存储位置还是很模糊,下面通过一个简单的程序,再来体会理解一下【多余一段】

#include <stdio.h>
static unsigned int val1 = 1;        //val1存放在.data段
unsigned int val2 = 1;               //初始化的全局变量存放在.data段
unsigned int val3 ;                  //未初始化的全局变量存放在.bss段
const unsigned int val4 = 1;         //val4存放在.rodata(只读数据段)
unsigned char Demo(unsigned int num) //num 存放在栈区
{
  char var = "123456";               //var存放在栈区,"123456"存放在常量区
  unsigned int num1 = 1 ;            //num1存放在栈区
  static unsigned int num2 = 0;      //num2存放在.data段
  const unsigned int num3 = 7;       //num3存放在栈区
  void *p;
  p = malloc(8);                     //p存放在堆区
  free(p);
  return 1;
}
void main()
{
  unsigned int num = 0 ;
  num = Demo(num);                   //Demo()函数的返回值存放在栈区。
}

上面我们已经对堆、栈、全局区、常量区、代码区进行了全面的分析,也举例进行了说明。下面我们在对这些区存放在哪种介质上进行讨论。

8、RAM和ROM、Flash Memory的物理特性

首先,我们需要明白RAM和ROM、Flash Memory的物理特性。

9、RAM

RAM又称随机存取存储器,存储的内容可通过指令随机读写访问。RAM中的存储的数据在掉电是会丢失,因而只能在开机运行时存储数据。其中RAM又可以分为两种,一种是Dynamic RAM(DRAM动态随机存储器),另一种是Static RAM(SRAM,静态随机存储器)。

10、ROM

ROM又称只读存储器,只能从里面读出数据而不能任意写入数据。ROM与RAM相比,具有读写速度慢的缺点。但由于其具有掉电后数据可保持不变的优点,因此常用也存放一次性写入的程序和数据,比如主版的BIOS程序的芯片就是ROM存储器。

11、Flash Memory

由于ROM具有不易更改的特性,后面就发展了Flash Memory。Flash Memory不仅具有ROM掉电不丢失数据的特点,又可以在需要的时候对数据进行更改,不过价格比ROM要高。

12、不同数据的存放位置

由前面的分析我们知道,代码区和常量区的内容是不允许被修改的,ROM(STM32就是Flash Memory)也是不允许被修改的,所以代码区和常量区的内容编译后存储在ROM中。

而栈、堆、全局区(.bss段、.data段)都是存放在RAM中。

至此,关于不同数据存放哪个区域已经全部介绍完了。下面还将介绍一下Keil 的Build Output窗口。

13、Keil 的Build Output窗口

如上图,存在Code、RO-data、RW-data、ZI-data四个代码段大小。

其中Code就是代码占用大小,RO-data是只读常量、RW-data是已初始化的可读可写变量,ZI-data是未初始化的可读可写变量。

有些时候,我们需要知道RAM和ROM的使用情况如何,那么我们就可以使用下面的公式计算。

RAM  = RW-data + ZI-data

ROM = Code + RO-data + RW-data

目录
相关文章
|
2月前
|
缓存 监控 Linux
CentOS系统如何查看当前内存容量。
以上方法都不需要特殊软件或者复杂配置即可执行,在CentOS或其他Linux发行版中都适合运行,并且它们各自透露出不同角度对待问题解答方式:从简单快速到深入详尽;从用户态到核心态;从操作层数到硬件层数;满足不同用户需求与偏好。
266 8
|
3月前
|
存储 缓存 监控
手动清除Ubuntu系统中的内存缓存的步骤
此外,只有系统管理员或具有适当权限的用户才能执行这些命令,因为这涉及到系统级的操作。普通用户尝试执行这些操作会因权限不足而失败。
575 22
|
9月前
|
存储 安全 iOS开发
内存卡怎么格式化?6个格式化方法供你选
随着使用时间的增加,内存卡可能会因为数据积累、兼容性或是文件系统损坏等原因需要进行格式化。那么怎样正确格式化内存卡呢?格式化内存卡的时候需要注意什么呢?本文会给大家提供详细的步骤,帮助大家轻松完成格式化内存卡的操作。
|
4月前
|
存储 Windows
内存卡坏了还能修吗?4种常见修复方法
内存卡出现“无法保存”或“存储异常”等问题时,不一定是硬件损坏,可能是系统错误或文件系统异常导致。本文介绍几种亲测有效的修复方法:1) 更换读卡设备排除接触问题;2) 格式化修复文件系统(需先备份数据);3) 使用DiskGenius检测坏道;4) 借助厂商工具深度修复。同时提供日常保养建议,如避免高温环境、养成数据备份习惯,延长内存卡使用寿命。通过这些方法,多数问题可轻松解决,无需更换硬件。
|
7月前
|
监控 Linux Python
Linux系统资源管理:多角度查看内存使用情况。
要知道,透过内存管理的窗口,我们可以洞察到Linux系统运行的真实身姿,如同解剖学家透过微观镜,洞察生命的奥秘。记住,不要惧怕那些高深的命令和参数,他们只是你掌握系统"魔法棒"的钥匙,熟练掌握后,你就可以骄傲地说:Linux,我来了!
243 27
|
10月前
|
机器学习/深度学习 人工智能 缓存
【AI系统】推理内存布局
本文介绍了CPU和GPU的基础内存知识,NCHWX内存排布格式,以及MNN推理引擎如何通过数据内存重新排布进行内核优化,特别是针对WinoGrad卷积计算的优化方法,通过NC4HW4数据格式重排,有效利用了SIMD指令集特性,减少了cache miss,提高了计算效率。
325 3
|
10月前
|
监控 Java Android开发
深入探索Android系统的内存管理机制
本文旨在全面解析Android系统的内存管理机制,包括其工作原理、常见问题及其解决方案。通过对Android内存模型的深入分析,本文将帮助开发者更好地理解内存分配、回收以及优化策略,从而提高应用性能和用户体验。
|
10月前
|
机器学习/深度学习 人工智能 算法
【AI系统】内存分配算法
本文探讨了AI编译器前端优化中的内存分配问题,涵盖模型与硬件内存的发展、内存划分及其优化算法。文章首先分析了神经网络模型对NPU内存需求的增长趋势,随后详细介绍了静态与动态内存的概念及其实现方式,最后重点讨论了几种节省内存的算法,如空间换内存、计算换内存、模型压缩和内存复用等,旨在提高内存使用效率,减少碎片化,提升模型训练和推理的性能。
457 1
|
3月前
|
存储
阿里云轻量应用服务器收费标准价格表:200Mbps带宽、CPU内存及存储配置详解
阿里云香港轻量应用服务器,200Mbps带宽,免备案,支持多IP及国际线路,月租25元起,年付享8.5折优惠,适用于网站、应用等多种场景。
928 0
|
3月前
|
存储 缓存 NoSQL
内存管理基础:数据结构的存储方式
数据结构在内存中的存储方式主要包括连续存储、链式存储、索引存储和散列存储。连续存储如数组,数据元素按顺序连续存放,访问速度快但扩展性差;链式存储如链表,通过指针连接分散的节点,便于插入删除但访问效率低;索引存储通过索引表提高查找效率,常用于数据库系统;散列存储如哈希表,通过哈希函数实现快速存取,但需处理冲突。不同场景下应根据访问模式、数据规模和操作频率选择合适的存储结构,甚至结合多种方式以达到最优性能。掌握这些存储机制是构建高效程序和理解高级数据结构的基础。
262 1

热门文章

最新文章