物理层概念与实现技术

简介: 物理层概念与实现技术

物理层

物理层的基本概念:

四大特性:(***)

  • 机械特性:接口是怎么样的
  • 电气特性:用多少伏的电
  • 功能特性:线路上电平电压的特性
  • 过程特性:实现不同功能所发射信号的顺序

两种信号:

  • 模拟信号—特定频段的信号—有更加丰富的表现形式------抗干扰能力弱
  • 数字信号—不是1就是0--------抗干扰能力强

调制和编码:

  • 调制:模拟信号转换
  • 编码:
  • 数字信号转换
  • 编码的步骤:采样 量化 编码
  • 区别:
  • 数据可以通过编码手段转成数字信号,也可以通过调制手段将数据转成模拟型号。
  • 数字数据可以通过数字发送器转化为数字信号(编码),也可以通过调制器转化为模拟信号。
  • 模拟信号可以通过PCM编码器转化为数字信号(编码),也可以通过放大器调制器转化为模拟型号(调制)。

传输介质:

  • 传输距离100-500(中继器 最多四个,超过就失真了)
  • 屏蔽双绞线STP:抗干扰强,贵一些
  • 非屏蔽双绞线:便宜,抗干扰差
  • 制作标准:
  • 568B:橙白,橙,绿白,蓝,蓝白,绿,棕白,棕 :八种
  • 568A:13,26调换—绿白,绿,绿白,蓝,蓝白,橙,棕白,棕
  • 光纤:
  • 多模光纤:
  • 芯较粗(50或62.5)。可以传多种模式的光。但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加的严重。例如:600MB/KM的光纤在2KM时只有300MB的宽带了。因此多模光纤传输距离就比较的近,一般只有几公里。
  • 距离:2KM
  • 单模光纤:
  • 单模光纤:中间纤芯很细(芯径一般是8-10),只能传一种模式的光,因此。其模间色散很小,适合语远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄。稳定性要好。
  • 距离:100KM
  • 同轴电缆:淘汰了
  • 无线:无线信号频率 IEEE802.11

三大部分:

  • 源系统:发送数据的一端
  • 传输系统:传输过程中的各种传输介质
  • 目的系统:接收数据的电脑

物理层的基本通信技术

四种信道复用技术

复用技术
  • 复用技术是指一种在传输路径上综合多路道信道,然后恢复原机制或则解除终端各信道复用技术的过程
  • 将多种不同的信号在同一信道上进行传输,复用技术主要是用来解决不同信号传输时应该如何区分。
频分复用FDM
  • 频分多路复用,是在适于某种传输媒介的传输频带内,若干个频谱互不重叠的信号一并传输的方式,简称FDM。在每路信号进入传输频带前,先要以此搬移频率(调制),而在接收端,在搬回到原来的频段,恢复每路的原信号,从而使传输频带得到多路信号的复用。
  • 划分不同频率来并行传输信号
时分复用TDM
  • 时分复用TDM是采用同一物理连接的不同时段来传输不同的信号,也能达到多路传输的此目的。时分多路复用以时间作为信号分割的参量,故必须使各路信号在时间轴上互不重叠。时分复用TDM就是将提供给整个信道传输信息的时间划分为若干时间片(简称时隙),并将这些时隙分给每一个信号源使用
  • 划分不同的时间段来传输信号
波分复用WDM(波)
  • 是将两种或多种不i同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器)汇合在一起,并耦合到光线路的同一根光纤中进行传输技术
  • 根据光波的波长进行传输(合波器耦合)
码分复用
  • 码分复用CDM是靠不同的编码来区分各路原始信号的一种复用方式,主要和各种多址技术结合产生了各种接入技术,包括无线和有线接入。
  • 在同一时间同一频率根据传输的数据码进行区分

数据传输方式

通过同时间传输数量分为
  • 串行传输
  • 使用一条数据线,将数据一位一位的依次输入,每一位数据占据一个固定的时间长度。只需要少数几条先就可以在系统间交换信息,特别适用于计算机语计算机,外设之间的远距离通信。
  • 并行传输
  • 并行传输指的是数据以成组的方式,在多条并行信道上同时进行传输,是在传输中有多个数据位同时在设备之间进行的传输。
通过数据报文的双方的行为分为
  • 同步传输
  • 同步:在计算机网络中,定时的因素称为位同步。同步是要接收按照发送放放送的每个位的起止时刻和速率来接受数据,否则会产生误差。
  • 同步传输的比特分组要大得多。他不会独立的发送每个字符,每个字符都有自己的开始位和停止位,而是把他们组合起来发送。我们将这些组合称为数据帧,或简称帧
  • 异步传输:
  • 异步传输将比特分成小组进行传输,小组可以是8位的1个字符或更长。发送方可以在任何时刻发送这些比特组,而接受方从不知道它们会在什么时候到达。

通过传输的信号分

  • 基带传输:传输数字信号叫做基带传输
  • 频带传输:传输模拟信号叫做频带传输(300-3400HZ)

通过传输方向分

单工 半双工 全双工

通过传输对象分

单播 组播 广播

相关文章
|
5月前
|
网络协议 数据安全/隐私保护 网络虚拟化
深入了解OSI模型:计算机网络的七大层次
OSI模型 OSI模型是一个网络通信的概念模型,用于描述计算机网络中各个不同层次之间的通信和功能。它将网络通信分为七个不同的层次,每个层次负责不同的任务,使得网络通信的设计、开发和管理更加模块化和可维护。以下是OSI模型的七个层次以及它们的主要功能: 1、物理层(Physical Layer): 功能:处理物理传输介质上的原始比特流,确保数据在传输媒体上能够以适当的方式传输。 示例设备:集线器、中继器、网线等。 主要任务:比特编码、电压规范、物理拓扑等。 2、数据链路层(Data Link Layer): 功能:负责将原始比特流分割成帧并添加地址信息,以便在直接连接的设备之间传输数据。 示例设
151 0
|
2月前
|
C语言 数据安全/隐私保护
计算机网络:物理层(码分复用计算)
计算机网络:物理层(码分复用计算)
|
2月前
|
存储
计算机网络:物理层(三种数据交换方式)
计算机网络:物理层(三种数据交换方式)
|
11月前
|
网络架构
【计算机网络基础 二】物理层
【计算机网络基础 二】物理层
83 0
|
11月前
|
网络协议 网络架构
【计算机网络基础 一】分层体系结构
【计算机网络基础 一】分层体系结构
62 0
七、物理层基本概念和数据通信的基础知识
七、物理层基本概念和数据通信的基础知识
七、物理层基本概念和数据通信的基础知识
|
SQL 网络协议 API
计算机网络是如何分层的?
计算机网络是如何分层的?
计算机网络是如何分层的?
|
缓存 网络协议 数据安全/隐私保护
【计算机网络】数据链路层重点协议
源主机发出ARP请求,询问“IP地址是192.168.0.1的主机的硬件地址是多少”,并将这个请求广播到本地网段(以太网帧首部的硬件地址填FF:FF:FF:FF:FF:FF表示广播
【计算机网络】数据链路层重点协议
|
存储 数据处理 C++
第二章:物理层 计算机网络物理层篇章
第二章:物理层 计算机网络物理层篇章
107 0
第二章:物理层 计算机网络物理层篇章