C语言之动态内存管理篇(1)下

简介: C语言之动态内存管理篇(1)2

关于就是realloc函数返回的指针的两种不同的情况。

【情况1 】


要扩展内存就直接原有内存之后直接追加空间,原来空间的数据不发生变化。

  • realloc函数此时的返回值是旧的空间的起始地址


【情况2】


原有空间之后没有足够多的空间时,扩展的方法是:在堆空间上另找一个合适大小的连续空间来使用。这样函数返回的是一个新的内存地址。 且realloc函数有三个特点

  • realloc函数会将旧的空间的数据,拷贝到新的空间里
  • realloc函数拷贝完成后,会将旧的空间释放掉
  • realloc函数此刻的返回值不是原来的地址,而是新的空间的起始地址


关于原地和异地扩容的验证:

【原地扩容】

#include<stdio.h>
#include<stdlib.h>
int main()
{
  int* p1 = (int*)malloc(40);
  int* p2 = (int*)realloc(p1,80);//扩容40
  printf("p1=%p\n", p1);
  printf("p2=%p", p2);
  return 0;
}

【异地扩容】

#include<stdio.h>
#include<stdlib.h>
int main()
{
  int* p1 = (int*)malloc(40);
  int* p2 = (int*)realloc(p1,800);//扩容760
  printf("p1=%p\n", p1);
  printf("p2=%p", p2);
  return 0;
}


当然除此之外,realloc还可以当成malloc来使用,只要传空指针即可。

所以所以 ptr可以为空指针NULL

#include<stdio.h>
#include<stdlib.h>
int main()
{
  int* ptr = (int*)realloc(NULL, 10 * sizeof(int));
  if (ptr == NULL)
  {
    perror("realloc");
    return 1;
  }
  free(ptr);
  ptr = NULL;
  return 0;
}

常见的动态内存错误

  • 对NULL指针的解引用操作
  • 对动态开辟空间的越界访问
  • 对非动态开辟内存使用free释放
  • 使用free释放一块动态开辟内存的一部分
  • 对同一块动态内存多次释放
  • 动态开辟内存忘记释放(内存泄漏)

接下来我们一个一个纠错!

NO1.  

//对NULL指针的解引用操作
void test()
{
  int* p = (int*)malloc(40);
  //不做返回值的判断,就可能是使用空指针解引用
  *p = 20;//如果p的值是NULL,就会有问题
  free(p);
}

【修改】加上返回值的判断


#include<stdio.h>
void test()
{
  int* p = (int*)malloc(40);
  if (p == NULL)
  {
    perror("malloc");
    return 1;
  }
  *p = 20;
  free(p);
}
int main()
{
  test();
  return 0;
}

NO2.

//对动态开辟空间的越界访问
#include<stdio.h>
void test()
{
  int i = 0;
  int* p = (int*)malloc(10 * sizeof(int));
  if (NULL == p)
  {
    perror("malloc");
    return 1;
  }
  for (i = 0; i <= 10; i++)
  {
    *(p + i) = i;//当i是10的时候越界访问
  }
  free(p);
  p = NULL;
}
int main()
{
  test();
  return 0;
}

【修改】不越界即可


#include<stdio.h>
void test()
{
  int i = 0;
  int* p = (int*)malloc(10 * sizeof(int));
  if (NULL == p)
  {
    perror("malloc");
    return 1;
  }
  for (i = 0; i < 10; i++)
  {
    *(p + i) = i;//当i是10的时候越界访问
  }
  free(p);
  p = NULL;
}
int main()
{
  test();
  return 0;
}

NO3.

//对非动态开辟内存使用free释放
#include<stdio.h>
void test()
{
  int a = 10;
  int* p = &a;
  free(p);
  p = NULL;//err
}
int main()
{
  test();
  return 0;
}

【修改】不可以哈,删去free


//对非动态开辟内存使用free释放
#include<stdio.h>
void test()
{
  int a = 10;
  int* p = &a;
}
int main()
{
  test();
  return 0;
}

NO4.

//使用free释放一块动态开辟内存的一部分
//示例1
#include<stdio.h>
void test()
{
  int* p = (int*)malloc(100);
  p++;
  free(p);//p不再指向动态内存的起始位置
}
int main()
{
  test();
  return 0;
}
//示例2
#include<stdio.h>
#include<stdlib.h>
int main()
{
  int* p = (int*)calloc(10, sizeof(int));
  if (p == NULL)
  {
    perror("calloc");
    return 1;
  }
  //赋值
  int i = 0;
  for (i = 0; i < 5; i++)
  {
    *p = i;
    p++;
  }
  //0 1 2 3 4 0 0 0 0 0
  for (i = 0; i < 5; i++)
  {
    printf("%d ", p[i]);
  }
  free(p);//只是释放了后面五个0
  p = NULL;
  return 0;
}

【修改】不要让p移动,想移动就另外设置一个指针让它去移动。养成好习惯不要动起始的指针


//示例1
#include<stdlib.h>
#include<stdio.h>
void test()
{
  int* p = (int*)malloc(100);
  int* ps = NULL;
  if (p == NULL)
  {
    perror("malloc");
    return 1;
  }
  else
  {
    ps = p;
  }
  ps++;
  free(p);
  p = NULL;//p不再指向动态内存的起始位置
}
int main()
{
  test();
  return 0;
}
//示例2
#include<stdio.h>
#include<stdlib.h>
int main()
{
  int* p = (int*)calloc(10, sizeof(int));
  if (p == NULL)
  {
    perror("calloc");
    return 1;
  }
  //赋值
  int i = 0;
  for (i = 0; i < 5; i++)
  {
    p[i] = i;
  }
  //0 1 2 3 4 0 0 0 0 0
  for (i = 0; i < 5; i++)
  {
    printf("%d ", p[i]);
  }
  free(p);//只是释放了后面五个0
  p = NULL;
  return 0;
}

NO5.

//对同一块动态内存多次释放
#include<stdlib.h>
#include<stdio.h>
void test()
{
  int* p = (int*)malloc(100);
  free(p);
  free(p);//重复释放
}
int main()
{
  test();
  return 0;
}

【修改】不要多次释放


#include<stdlib.h>
#include<stdio.h>
void test()
{
  int* p = (int*)malloc(100);
  free(p);
}
int main()
{
  test();
  return 0;
}
#include<stdlib.h>
#include<stdio.h>
void test()
{
  int* p = (int*)malloc(100);
  free(p);
  p = NULL;
  free(p);//ok
}
int main()
{
  test();
  return 0;
}

NO6.

//动态开辟内存忘记释放(内存泄露)
//示例1
#include<stdlib.h>
#include<stdio.h>
void test()
{
  int* p = (int*)malloc(100);
  if (NULL != p)
  {
    *p = 20;
  }
}
int main()
{
  test();
  while (1);//忘记释放
}
//示例2
#include<stdlib.h>
#include<stdio.h>
void test()
{
  int* p = (int*)malloc(100);
  if (NULL != p)//这里直接跳出循环
  {
    *p = 20;
  }
  free(p);//无用
  p = NULL;
}
int main()
{
  test();//调用完成 malloc申请的空间还在
  //没有忘记释放。但是释放没有用
  while (1);//死循环程序退出不了
}

【修改】 忘记释放或在函数内部释放了但是没有使用都会造成内存泄露


#include<stdlib.h>
#include<stdio.h>
int* test()
{
  int* p = (int*)malloc(100);
  if (NULL != p)
  {
    *p = 20;
  }
  return p;
}
int main()
{
  int *p=test();
  free(p);
  p = NULL;
  while (1);//忘记释放
}

动态开辟的空间一定要正确释放!!

✔✔✔✔✔最后,感谢大家的阅读,若有错误和不足,欢迎指正!下篇博文我们讲解几道相关笔试题

代码------→【gitee:唐棣棣 (TSQXG) - Gitee.com

联系------→【邮箱:2784139418@qq.com】

目录
相关文章
|
22天前
|
C语言 C++
C语言 之 内存函数
C语言 之 内存函数
30 3
|
7天前
|
C语言
【c语言】动态内存管理
本文介绍了C语言中的动态内存管理,包括其必要性及相关的四个函数:`malloc`、``calloc``、`realloc`和`free`。`malloc`用于申请内存,`calloc`申请并初始化内存,`realloc`调整内存大小,`free`释放内存。文章还列举了常见的动态内存管理错误,如空指针解引用、越界访问、错误释放等,并提供了示例代码帮助理解。
23 3
|
23天前
|
编译器 程序员 C语言
深入C语言:动态内存管理魔法
深入C语言:动态内存管理魔法
|
28天前
|
存储 程序员 编译器
C语言——动态内存管理与内存操作函数
C语言——动态内存管理与内存操作函数
|
30天前
|
程序员 C语言
C语言内存函数精讲
C语言内存函数精讲
|
9天前
|
存储 C语言
【c语言】字符串函数和内存函数
本文介绍了C语言中常用的字符串函数和内存函数,包括`strlen`、`strcpy`、`strcat`、`strcmp`、`strstr`、`strncpy`、`strncat`、`strncmp`、`strtok`、`memcpy`、`memmove`和`memset`等函数的使用方法及模拟实现。文章详细讲解了每个函数的功能、参数、返回值,并提供了具体的代码示例,帮助读者更好地理解和掌握这些函数的应用。
12 0
|
18天前
|
C语言
保姆级教学 - C语言 之 动态内存管理
保姆级教学 - C语言 之 动态内存管理
14 0
|
23天前
|
存储 C语言
深入C语言内存:数据在内存中的存储
深入C语言内存:数据在内存中的存储
|
23天前
|
C语言 C++
c语言回顾-内存操作函数
c语言回顾-内存操作函数
38 0
|
25天前
|
存储 C语言 C++
来不及哀悼了,接下来上场的是C语言内存函数memcpy,memmove,memset,memcmp
本文详细介绍了C语言中的四个内存操作函数:memcpy用于无重叠复制,memmove处理重叠内存,memset用于填充特定值,memcmp用于内存区域比较。通过实例展示了它们的用法和注意事项。
60 0