MATALB运用——最小二乘法拟合

简介: MATALB运用——最小二乘法拟合

实验一

编制以函数image.png 为基的多项式最小二乘拟合程序,并用于对下表中的数据作3次多项式最小二乘拟合。

47271a6454117125880e290117c00fd6_20210602111350410.png

image.png


1、思路

在MATLAB中,多项式最小二乘法的拟合可以采用库函数polyfit()

p = polyfit(x,y,n) :返回次数为 n 的多项式 p(x) 的系数,该阶数是 y 中数据的最佳拟合(在最小二乘方式中)。p 中的系数按降幂排列,p 的长度为 n+1。

2、程序

function test_1
format long
%利用库函数polyfit做3次多项式最小二乘拟合
%求参数{a_k}、平方误差、拟合函数的图形
x=[-1.0,-0.5,0.0,0.5,1.0,1.5,2.0];
y=[-4.447,-0.452,0.551,0.048,-0.447,0.549,4.552];
p=polyfit(x,y,3);%3次多项式最小二乘拟合
y1=polyval(p,x);
r=sum((y-y1).^2);%平方误差
clf;
plot(x,y,'*');
hold on;
x0=[-1:0.01:2];
plot(x0,polyval(p,x0),'r-');
axis([-1.5,2.5,-5,5]);
xlabel('x轴');ylabel('y轴');title('3次多项式最小二乘拟合');
disp(['平方误差:',sprintf('%g',r)]);
disp(['参数:',sprintf('%g\t',p)]);

3、运行结果

平方误差:2.17619e-05

参数:1.99911 -2.99767 -3.96825e-05


实验二

编制正交化多项式最小二乘法拟合程序,并用于求解上题中的3次多项式最小二乘法拟合问题,做拟合曲线的图形,计算平方误差,并于实验一进行比较。

1、思路

2、程序

function test_3_2
format long
%利用正交化求数据的二次多项式拟合
%输出:拟合系数参数、平方误差、拟合图像
x=[-1.0,-0.5,0.0,0.5,1.0,1.5,2.0];
y=[-4.447,-0.452,0.551,0.048,-0.447,0.549,4.552];
w=[1,1,1,1,1,1,1];
n=3;
[a,b,c,alph,r]=flp(x,y,w,n)
disp(['平方误差:',sprintf('%g',r)]);
disp(['参数:',sprintf('%g\t',alph)]);
clf;
plot(x,y,'*');
hold on;
x0=[-1:0.01:2];
plot(x0,polyval(alph,x0),'r-');
axis([-1.5,2.5,-5,5]);
xlabel('x轴');ylabel('y轴');title('正交化的3次多项式最小二乘拟合');
function [a,b,c,alph,r]=flp(x,y,w,n)
%求正交递推公式的参数a、b,拟合多项式的系数c,整理之后的降幂系数alpha
m=length(x);
s1=ones(1,m);
v1=sum(w);
d(1)=y*w';c(1)=d(1)/v1;
for k=1:n
    xs=x.*s1.^2*w';
    a(k)=xs/v1;
    if (k==1)
        s2=(x-a(k)).*s1;
    else
        b(k)=v2/v11;
        s2=(x-a(k)).*s1-b(k)*s0;
    end
    v2=s2.^2*w';
    d(k+1)=y.*s2*w';c(k+1)=d(k+1)/v2;
    v11=v1;v1=v2;s0=s1;s1=s2;
end
%求平方误差r
r=y.*y*w'-c*d';
%拟合多项式合并同类项后的降幂系数
syms x
p0=1;
T=c(1)*p0;
for k=2:n+1
    if (k==2)
        p2=x-a(k-1);
    else
        p2=(x-a(k-1))*p1-b(k-1)*p0;
        p0=p1;
    end
    T=T+c(k)*p2;
    p1=p2;
end
T=collect(T);%合并同类项
alph=sym2poly(T);

3、运行结果

可见,但多项式次数为3时,两种方法拟合的结果和误差基本一致。

目录
相关文章
|
存储 人工智能
最小二乘法拟合
 /** * 最小二乘法拟合 *  *  * @author Ken转发 *  */public class Linest { /**  * <p>  * 函数功能:最小二乘法曲线拟合  * </p>  *   * @param x  *            实型一维数组,长度为 n 。存放给定 n 个数据点的 X 坐标  * @param y  *         
918 0
线性模型的最小二乘法拟合(转)
我们知道在二维坐标中,已知两点就可以确定一个线性方程,如果有n个数据点(x1,y1),(x2,y2),...(xn,yn),那么就会有n个线性方程,我们使用最小二乘法从这n个方程中拟合出一个最佳的线性方程,也就是求出方程的参数a,b设某个已知的一元线性方程的表达式为:y=a+bx有一组权重相等的...
924 0
|
9月前
R方和线性回归拟合优度
R方和线性回归拟合优度
|
机器学习/深度学习
拟合(转)
所谓拟合是指已知某函数的若干离散函数值{f1,f2,…,fn},通过调整该函数中若干待定系数f(λ1, λ2,…,λn),使得该函数与已知点集的差别(最小二乘意义)最小。如果待定函数是线性,就叫线性拟合或者线性回归(主要在统计中),否则叫作非线性拟合或者非线性回归。
849 0
|
C++ 计算机视觉
C++-柱面拟合FitCylinder
C++-柱面拟合FitCylinder
101 0
|
Python
线性回归之——最小二乘法
原文地址:http://sbp810050504.blog.51cto.com/2799422/1269572 一、引言 这段时间学习《机器学习》,学到第5章的“Logistic回归”,感觉相当吃力。
1178 0
线性回归之最小二乘法
线性回归 线性回归是很常见的一种回归,线性回归可以用来预测或者分类,主要解决线性问题。 最小二乘法 线性回归过程主要解决的就是如何通过样本来获取最佳的拟合线。
1175 0
|
6月前
|
机器学习/深度学习
|
机器学习/深度学习 数据采集
多项式回归
机器学习中的多项式回归是一种用于解决回归问题的非线性模型。与线性回归不同,
117 2

热门文章

最新文章