MATALB运用——最小二乘法拟合

简介: MATALB运用——最小二乘法拟合

实验一

编制以函数image.png 为基的多项式最小二乘拟合程序,并用于对下表中的数据作3次多项式最小二乘拟合。

47271a6454117125880e290117c00fd6_20210602111350410.png

image.png


1、思路

在MATLAB中,多项式最小二乘法的拟合可以采用库函数polyfit()

p = polyfit(x,y,n) :返回次数为 n 的多项式 p(x) 的系数,该阶数是 y 中数据的最佳拟合(在最小二乘方式中)。p 中的系数按降幂排列,p 的长度为 n+1。

2、程序

function test_1
format long
%利用库函数polyfit做3次多项式最小二乘拟合
%求参数{a_k}、平方误差、拟合函数的图形
x=[-1.0,-0.5,0.0,0.5,1.0,1.5,2.0];
y=[-4.447,-0.452,0.551,0.048,-0.447,0.549,4.552];
p=polyfit(x,y,3);%3次多项式最小二乘拟合
y1=polyval(p,x);
r=sum((y-y1).^2);%平方误差
clf;
plot(x,y,'*');
hold on;
x0=[-1:0.01:2];
plot(x0,polyval(p,x0),'r-');
axis([-1.5,2.5,-5,5]);
xlabel('x轴');ylabel('y轴');title('3次多项式最小二乘拟合');
disp(['平方误差:',sprintf('%g',r)]);
disp(['参数:',sprintf('%g\t',p)]);

3、运行结果

平方误差:2.17619e-05

参数:1.99911 -2.99767 -3.96825e-05


实验二

编制正交化多项式最小二乘法拟合程序,并用于求解上题中的3次多项式最小二乘法拟合问题,做拟合曲线的图形,计算平方误差,并于实验一进行比较。

1、思路

2、程序

function test_3_2
format long
%利用正交化求数据的二次多项式拟合
%输出:拟合系数参数、平方误差、拟合图像
x=[-1.0,-0.5,0.0,0.5,1.0,1.5,2.0];
y=[-4.447,-0.452,0.551,0.048,-0.447,0.549,4.552];
w=[1,1,1,1,1,1,1];
n=3;
[a,b,c,alph,r]=flp(x,y,w,n)
disp(['平方误差:',sprintf('%g',r)]);
disp(['参数:',sprintf('%g\t',alph)]);
clf;
plot(x,y,'*');
hold on;
x0=[-1:0.01:2];
plot(x0,polyval(alph,x0),'r-');
axis([-1.5,2.5,-5,5]);
xlabel('x轴');ylabel('y轴');title('正交化的3次多项式最小二乘拟合');
function [a,b,c,alph,r]=flp(x,y,w,n)
%求正交递推公式的参数a、b,拟合多项式的系数c,整理之后的降幂系数alpha
m=length(x);
s1=ones(1,m);
v1=sum(w);
d(1)=y*w';c(1)=d(1)/v1;
for k=1:n
    xs=x.*s1.^2*w';
    a(k)=xs/v1;
    if (k==1)
        s2=(x-a(k)).*s1;
    else
        b(k)=v2/v11;
        s2=(x-a(k)).*s1-b(k)*s0;
    end
    v2=s2.^2*w';
    d(k+1)=y.*s2*w';c(k+1)=d(k+1)/v2;
    v11=v1;v1=v2;s0=s1;s1=s2;
end
%求平方误差r
r=y.*y*w'-c*d';
%拟合多项式合并同类项后的降幂系数
syms x
p0=1;
T=c(1)*p0;
for k=2:n+1
    if (k==2)
        p2=x-a(k-1);
    else
        p2=(x-a(k-1))*p1-b(k-1)*p0;
        p0=p1;
    end
    T=T+c(k)*p2;
    p1=p2;
end
T=collect(T);%合并同类项
alph=sym2poly(T);

3、运行结果

可见,但多项式次数为3时,两种方法拟合的结果和误差基本一致。

目录
相关文章
|
机器学习/深度学习 数据可视化 Python
逻辑回归那些事—使用牛顿法解决实际问题
逻辑回归是机器学习中的重要章节,本文将带你从公式推导到算法实现详细讲述这部分内容,想学习这个高大上的技能么,快来看吧!!!
5486 0
|
3月前
|
机器学习/深度学习
|
5月前
|
机器学习/深度学习 数据可视化 Python
Logistic回归(一)
这篇内容是一个关于逻辑回归的教程概览
|
5月前
|
机器学习/深度学习 算法
Logistic回归(二)
Logistic回归,又称对数几率回归,是用于分类问题的监督学习算法。它基于对数几率(log-odds),通过对数转换几率来确保预测值在0到1之间,适合于二分类任务。模型通过Sigmoid函数(S型曲线)将线性预测转化为概率。逻辑回归损失函数常采用交叉熵,衡量模型预测概率分布与真实标签分布的差异。熵和相对熵(KL散度)是评估分布相似性的度量,低熵表示分布更集中,低交叉熵表示模型预测与真实情况更接近。
|
6月前
|
机器学习/深度学习 算法 调度
多元线性回归梯度下降法
梯度下降法是一种通用的优化算法,尤其适用于机器学习中找到最优解。与解析解法不同,它不局限于特定情况,能在数据规模较大时依然有效。该方法通过迭代逐步接近最优解,每次迭代利用损失函数的梯度信息调整参数。学习率是控制参数更新幅度的关键因素,太大会导致发散,太小则收敛慢。全量梯度下降每次使用所有样本更新,收敛稳定但速度慢;随机梯度下降每次仅用一个样本,速度快但可能产生较大波动;小批量梯度下降取两者之间,以一定的样本批量进行更新,兼顾速度和稳定性。
76 1
|
6月前
R方和线性回归拟合优度
R方和线性回归拟合优度
|
C++ 计算机视觉
C++-柱面拟合FitCylinder
C++-柱面拟合FitCylinder
曲线拟合-最小二乘法
线性最小二乘法及matlab例程
|
机器学习/深度学习
Lesson 4.2 逻辑回归参数估计:极大似然估计、相对熵与交叉熵损失函数-2
Lesson 4.2 逻辑回归参数估计:极大似然估计、相对熵与交叉熵损失函数-2
|
机器学习/深度学习 算法
Lesson 4.2 逻辑回归参数估计:极大似然估计、相对熵与交叉熵损失函数-1
Lesson 4.2 逻辑回归参数估计:极大似然估计、相对熵与交叉熵损失函数-1