继口罩、抗原、药品之后,最近电子血氧仪的价格也开始水涨船高。从一个多月前的100多元,暴涨到了300多元。
那么,这类家用的电子血氧仪是如何工作的呢?测量数据到底准不准?今天就带大家来分析一下。
一、血氧仪工作原理
血氧仪是一种监测脉搏、血氧饱和度等指标的医疗器械,常见的家用型血氧仪,主要有指夹式、腕表式等形式。
一般大家最关注的是血氧饱和度(oxygen saturation简写为SpO2),它是指在全部血容量中被结合O2容量占全部可结合的O2容量的百分比,是人体携带氧气能力的重要参考值。人体正常的SpO2应该不小于95%,长期低于93%时需要就医。
SpO2 一般由以下公式计算:
其中CHbO2是氧合血红蛋白浓度,CHb是还原血红蛋白浓度。
一方面,这两种血红蛋白对不同波长的光有不同的吸收度;另一方面,当动脉跳动时,动脉中的血液量会发生变化,可以区分出皮肤、肌肉、静脉血等对光的吸收影响(这些组织对光的吸收可以认为固定不变)。因此,利用两种不同波长的光,经透射或反射后,采集数据综合处理,就能计算出血氧饱和度。
现在市面上最常见的,都是光电式的血氧仪,如下图所示,有透射式和反射式两种实现方法。
常见的指夹式血氧仪就是透射式,智能手环或手表就是反射式,原理是差不多的。
而LED光源的选择,与血红蛋白对不同光波长的吸收率有关,下图是两种血红蛋白对不同波长的光的消光系数图:
可以看到,两种血红蛋白对波长为660nm左右光的吸收差别最大,而对波长为800nm左右光的吸收基本相等。
从理论上说,使用660nm和800nm波长的光作为光源是最合适的,但由于在800nm左右时,二者的消光系数斜率相差较大,光波长偏差一点就会引起较大的吸收率变化,这对LED的制造工艺要求太高。所以,工程实现时,一般不用800nm波长的LED,而选择波长为860nm~920nm的LED作为另一个光源,这个区间的消光系数斜率基本一样,而且变化平缓。
至此,硬件部分的实现我们已经了解大概了,其实核心就是要使用两个LED作为光源,一个660nm波长的红外光,一个900nm左右波长的红光。两束光分别通过透射(或反射)皮肤后,到达光电接收管,再采集光电接收管的值。
那么,采集到两个光源的值后,又该如何处理呢?这里由于有比较多的公式推导,我们直接略过,给出下面的公式:
这里的实现需要三步:
第一步,我们采集的两个LED光源的值,需要分离出直流分量和交流分量,也就是:红光的交流分量ACred、红光的直流分量DCred、红外光的交流分量ACired、红外光的直流分量DCired;
第二步,用采集到的四个值,计算出R;
第三步,用R计算SpO2,这个计算公式中a、b、c是三个需要校准的参数。需要大量的试验数据去拟合出来。
二、血氧仪的制作
有了以上的理论基础,我们可以自己动手DIY一个血氧仪。
Maxim公司有一款集成芯片,可以实现大部分的硬件功能,就是MAX30100、MAX30102系列芯片。MAX30100已停产,新设计中不推荐使用,MAX30102是新一代产品。
目前价格还没有太离谱:
MAX30102集成了一个660nm红光LED、880nm红外光LED、光电检测器,以及带环境光抑制的低噪声电子电路。芯片内部含18bit ADC采集电路。对外是I2C接口。基本上单芯片就能实现光源信号的采集。
要注意,MAX30102的输出值,只是两个LED光源的采集值。后续还需要软件去实现交流、直流分离,R的求解、SpO2的求解。顺带也可以求解出脉搏数据。
使用max30102很简单,用I2C接口访问,初始化代码如下:
max30102_Bus_Write(REG_INTR_ENABLE_1,0xc0); // INTR settingmax30102_Bus_Write(REG_INTR_ENABLE_2,0x00);max30102_Bus_Write(REG_FIFO_WR_PTR,0x00); //FIFO_WR_PTR[4:0]max30102_Bus_Write(REG_OVF_COUNTER,0x00); //OVF_COUNTER[4:0]max30102_Bus_Write(REG_FIFO_RD_PTR,0x00); //FIFO_RD_PTR[4:0]max30102_Bus_Write(REG_FIFO_CONFIG,0x0f); //sample avg = 1, fifo rollover=false, fifo almost full = 17max30102_Bus_Write(REG_MODE_CONFIG,0x03); //0x02 for Red only, 0x03 for SpO2 mode 0x07 multimode LEDmax30102_Bus_Write(REG_SPO2_CONFIG,0x