There are three cells on an infinite 2-dimensional grid, labeled A, B, and F. Find the length of the shortest path from A to BB if:
- in one move you can go to any of the four adjacent cells sharing a side;
- visiting the cell F is forbidden (it is an obstacle).
Input
The first line contains an integer t (1≤t≤10^4 ) — the number of test cases in the input. Then t test cases follow. Before each test case, there is an empty line.
Each test case contains three lines. The first one contains two integers xA,yA ( 1≤xA,yA≤1000) — coordinates of the start cell A . The second one contains two integers xB,yB ( 1≤xB,yB≤1000) — coordinates of the finish cell B. The third one contains two integers xF,yF ( 1≤xF,yF≤1000) — coordinates of the forbidden cell F . All cells are distinct.
Coordinate x corresponds to the column number and coordinate y corresponds to the row number (see the pictures below).
Output
Output t lines. The i -th line should contain the answer for the i-th test case: the length of the shortest path from the cell A to the cell B if the cell F is not allowed to be visited.
Example
Input
7
1 1
3 3
2 2
2 5
2 1
2 3
1000 42
1000 1
1000 1000
1 10
3 10
2 10
3 8
7 8
3 7
2 1
4 1
1 1
1 344
1 10
1 1
Output
4
6
41
4
4
2
334
Note
An example of a possible shortest path for the first test case.
An example of a possible shortest path for the second test case.
题目分析
平面直角坐标系上有两个点和一个障碍。从一个点出发到另一个点,可以走上下左右,不能走障碍,求最短路的长度。
做法
我们发现大部分情况下障碍是不会造成影响的。只有当三个点横坐标相同或者纵坐标相同时且障碍在亮点中间时才会有效。具体实现看代码。
#include<bits/stdc++.h> using namespace std; int e[1005][1005]; int main() { int n; cin>>n; while(n--) { // memset(e,0,sizeof(e)); int x1,y1,x2,y2,a,b; cin>>x1>>y1>>x2>>y2>>a>>b; if(x1!= x2 && y1 != y2) { cout<<abs(x1 - x2) + abs(y1 - y2)<<endl; } else { if(x1 == x2 && y1 == y2) //|| (x1 == a && y1 == b) || (x2 == a && y2 == b))) { cout<<"0"<<endl; break; } if(x1 == x2) { if(max(y1,y2) > b && min(y1,y2) < b && x1 == a) { cout<<abs(y1 - y2) + 2<<endl; } else { cout<<abs(y1 - y2)<<endl; } } if(y1==y2) { if(max(x1,x2) > a && min(x1,x2) < a && y1 == b) { cout<<abs(x1 - x2) + 2<<endl; } else { cout<<abs(x1 - x2)<<endl; } } } } return 0; }