图像风格迁移

简介: 图像风格迁移

前言


对于图像分类模型,可以简单划分成两个部分,特征提取+特征分类。


1.其中特征提取主要由卷积层实现,浅层的卷积层往往只能提取一些点和线,深层的卷积层能够获得更多特征,如部分物体等。


2.分类主要全连接层实现,该层将卷积层提取到的特征转换成概率进行输出。

为什么说这个呢,因为图像风格迁移是输入特征,得到具有这种特征的图像。恰好和图像分类相反。所以,实现图像风格迁移其实就是利用卷积层的中间特征还原出具有该特征的图像。


论述


A.风格损失


1.图像风格的表示:图像卷积层特征的Gram矩阵。


举个栗子:假设某个卷积层L输出的特征是101032,即长宽10,通道32的张量,用F1表示第一个通道的特征,F32表示第32个通道的特征。如图:

1.png

2.损失函数:


A图片:风格图片。


G图片:需要得到A风格的图片。


a.我们首先得到A图片的Gram矩阵。


b.得到G图片的Gram矩阵。

2.png

公式如上图所示:


4NM是一个归一化项,为了防止数量级差距过大,主要目的就是让差越变越小,一般情况下,我们采取的是多层卷积结果进行还原,所以这个时候需要在公式前面加一个权重。


B.内容损失。


根据原始图像和采用卷积特征生成的图像之间内容的差异进行计算损失值。

3.png

C=A+B


P为原始的内容图像,A为原始的风格图像,X为需要生成的图像。希望X具有P内容的同时,具有A的风格。阿尔法和β是超参数,用来调整图像内容和风格的占比。

4.png


目录
相关文章
|
3月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
深度学习中的图像风格迁移
【9月更文挑战第26天】本文将探讨如何利用深度学习技术,实现图像风格的转换。我们将从基础的理论出发,然后逐步深入到具体的实现过程,最后通过代码实例来展示这一技术的实际应用。无论你是初学者还是有经验的开发者,都能在这篇文章中找到有价值的信息。让我们一起探索深度学习的奥秘吧!
|
7月前
|
编解码 人工智能 测试技术
无需训练,这个新方法实现了生成图像尺寸、分辨率自由
【4月更文挑战第25天】研究人员提出FouriScale方法,解决了扩散模型在生成高分辨率图像时的结构失真问题。通过膨胀卷积和低通滤波,该方法实现不同分辨率下图像的结构和尺度一致性,无需重新训练模型。实验显示FouriScale在保持图像真实性和完整性的同时,能生成任意尺寸的高质量图像,尤其在处理高宽比图像时表现出色。尽管在极高分辨率生成上仍有局限,但为超高清图像合成技术提供了新思路。[链接: https://arxiv.org/abs/2403.12963]
81 5
|
7月前
|
机器学习/深度学习 算法 计算机视觉
利用深度学习技术实现自动图像风格转换
本文将介绍如何利用深度学习技术中的神经网络结构,例如卷积神经网络和生成对抗网络,来实现自动图像风格转换。通过对图像特征的提取和风格迁移算法的应用,我们可以实现将一幅图像的风格转换为另一幅图像的艺术效果,为图像处理领域带来全新的可能性。
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
利用深度学习实现图像风格迁移
【8月更文挑战第73天】本文通过深入浅出的方式,介绍了一种使用深度学习技术进行图像风格迁移的方法。我们将探讨如何将一张普通照片转化为具有著名画作风格的艺术作品。文章不仅解释了背后的技术原理,还提供了一个实际的代码示例,帮助读者理解如何实现这一过程。
|
17小时前
|
人工智能 自然语言处理 计算机视觉
StyleStudio:支持图像风格迁移的文生图模型,能将融合参考图像的风格和文本提示内容生成风格一致的图像
StyleStudio 是一种文本驱动的风格迁移模型,能够将参考图像的风格与文本提示内容融合。通过跨模态 AdaIN 机制、基于风格的分类器自由引导等技术,解决了风格过拟合、控制限制和文本错位等问题,提升了风格迁移的质量和文本对齐的准确性。
21 8
StyleStudio:支持图像风格迁移的文生图模型,能将融合参考图像的风格和文本提示内容生成风格一致的图像
|
25天前
|
人工智能 自然语言处理 网络性能优化
Kandinsky-3:开源的文本到图像生成框架,适应多种图像生成任务
Kandinsky-3 是一个开源的文本到图像生成框架,基于潜在扩散模型,能够适应多种图像生成任务。该框架支持高质量和逼真的图像合成,包括文本引导的修复/扩展、图像融合、文本-图像融合及视频生成等功能。Kandinsky-3 通过简化模型架构,提高了推理速度,同时保持了图像质量。
45 2
Kandinsky-3:开源的文本到图像生成框架,适应多种图像生成任务
|
3月前
|
JSON Serverless 数据格式
函数计算生成冰冻风格的AIGC图像
【9月更文挑战第05天】
58 3
|
6月前
|
机器学习/深度学习 人工智能 算法
基于AI的图像风格转换系统:技术探索与实现
【6月更文挑战第7天】本文探讨了基于AI的图像风格转换系统的原理与实现,采用神经风格迁移技术,利用CNN分离并结合内容与风格。实现过程包括数据准备、构建模型(如VGG19和生成器网络)、定义内容及风格损失函数、训练模型、评估与调优,最终部署应用。尽管面临训练数据需求、计算复杂度和特定场景适应性的挑战,未来的研究将聚焦于技术提升、减少数据依赖及解决伦理隐私问题,以实现更高效智能的风格转换系统。
|
6月前
|
算法
轻松玩转人物风格迁移!DualStyleGAN让你一键生成各种风格人物图片!【一个有趣的开源项目】
轻松玩转人物风格迁移!DualStyleGAN让你一键生成各种风格人物图片!【一个有趣的开源项目】
|
6月前
|
机器学习/深度学习 编解码 计算机视觉
【一秒梵高】基于OpenCV4实现图像九种风格迁移
【一秒梵高】基于OpenCV4实现图像九种风格迁移
134 0