【经典八大排序】(2)

简介: 一 .直接插入排序直接插入排序是从一段数据中将一个数据在合适的位置插入。

六、快速排序

(以下为递归法)

快速排序是一种类似二叉树结构的排序。

思路: 在待排序数据中任取一个值作为基准值(key),按照一定的方式,将比key值小的数据放到左边,比key值大的放到右边,达到key值就是一个分割点,其左边比它小,右边比它大。然后以key为分割点分别对其左子区间和右子区间进行同样的操作。

1.Hoare法(不推荐)

Hoare法是快排的创始人Hoare提出的方法,这个方法有点难以理解,且有许多细节需要注意,不是很推荐该方法。

思路是:

给定两个下标,分别为left和right,记录最左边的下标和最右边的下标。选取一个值作为key(一般选最左边或者最右边的值作为key),其下标为keyi,如果是选左边做key,就让right先走,如果是选右边做key,就让左边先走。


假设选左边做key,right先走,找比key小的值,如果找到了,然后轮到左边left走,左边left找大,如果找到了,就交换left和right下标所对应的值。然后再重复该过程。


第一步:

image.gif

第二步:

ca121edaf0ab45c5b1428d8a9758165c.png

第三步:递归,先递归keyi的左边,再递归keyi的右边。

重复上述操作。


网络异常,图片无法展示
|

但是Hoare存在几个缺陷:

缺陷1.当数据为有序或者逆序的时候,我们每次选key都是选最左边或者最右边,这就导致了每排序完一次,keyi的位置仍然是最左边或者最右边,此时递归的次数就要递归n次,可能会导致栈溢出。

e5d0b4bd9ed84203a9026b0066488643.png

选基准值key的方法(快排的方法均可用)

所以我们需要每次去key的时候尽量取到中间的数,保证递归下去左右两个子区间是比较均匀的。

1、随机法

此时出现了两种取key的方法:

1.随机取key法:就是随机取一个key。

  // 随机选key
  int randi = left + (rand() % (right - left));
  //随机选到key后,把key放到左边的位置
  Swap(&a[left], &a[randi]);

2. 三数取中(推荐)

2.(推荐)三数取中法,三数取中法就是以left,right,mid为下标的三个数取一个中间大的数作为key。

6fea3e3ad1c44ab9ae4bbf4723c88a23.png

mid = (left+right)>>1 ;

a[left] = 6,a[right] = 8,a[mid] = 3;所以应该取的数是6。这样就保证了每次取到的数是比较中间的数,就不会出现当数据为顺序时递归深度太深出现栈溢出的情况。

//三数取中法取key
//从左,右,中三个数选出一个不大不小的数作为key
int GetMidNumi(int *a, int left, int right)
{
  int mid = (left + right) / 2;
  //也可以这样写 , 右移一位除2,左移一位乘2,左移两位乘2^2,以此类推
  //int mid = (left + right) >> 1;
  if (a[left] < a[right])
  {
    if (a[left] > a[mid])
    {
      return left;
    }
    else if(a[right] < a[mid])
    {
      return right;
    }
    else
    {
      return mid;
    }
  }
  else
  {
    if (a[right] > a[mid])
    {
      return right;
    }
    if (a[mid] > a[left])
    {
      return left;
    }
    else
    {
      return mid;
    }
  }
}

缺陷2、

前面说过,当用left作为key值时,right先走,且right找小,找到小了到left找大。

即:

while (left < right)
  {
    while (a[right] > a[keyi])
      --right;
    while (a[left] < a[keyi])
      ++left;
    Swap(&a[left], &a[right]);
  }

当排序的数据为 6 1 2 6 9 3 4 6 10 8 时,right向左边找小,找到的数据为6,left找大,找到的数据也为6,此时交换left和right之后,还是6不变,又重新循环right找小,left找大,这样永远会循环在6这个位置互相交换,就会出现死循环。


解决办法是加个等号。

如下:

while (left < right)
  {
    while (a[right] => a[keyi])
      --right;
    while (a[left] <= a[keyi])
      ++left;
    Swap(&a[left], &a[right]);
  }

缺陷3:

如果排序的数是 1 2 3 4 5

此时选1做key,先right找小,就会不断–,–这样会出现–到比left还小,就会出问题。

image.gif

综合来看,需要这样改进:

while (left < right)
  {
    while (left < right && a[right] => a[keyi])
      --right;
    while (left < right && a[left] <= a[keyi])
      ++left;
    Swap(&a[left], &a[right]);
  }

小区间优化(每种方法都可用)

了解小区间优化之前, 我们需要知道一个问题:

当数据量很大的时候,比如有一千万个数据,我们需要对其进行排序:

使用递归的方法进行排序,难免出现递归深度深而出现效率降低的情况。


f3e375a126294894a5e52e8552e7f56e.png

根据上图的情况可知,理想情况下,当有N个数据时,最小的递归深度是LogN。

此时,最后一层的递归次数是最多的,需要递归N/2次,也就是说,有100W个数据时,最后一层需要递归50W次!!那么倒数第二层需要递归25W次,倒数第三层需要递归12.5W次,假如我们能够把最后三层递归的次数消去,既能提高效率,也能减小递归消耗的栈空间。

所以当数据个数为10个以下时,就不需要用快排了,我们可以用直接插入排序来代替快排。

这就是为什么你在下面的代码能够看到当数据个数小于10,用插入排序的原因。

Hoare实现代码

void QuickSort1(SortDataType* a, int left, int right)
{
  //递归结束条件
  if (left >= right)
    return;
  int keyi = PartSort1(a, left, right);
  //递归下去
  // [left, keyi-1] keyi [keyi+1, right] 
  //小区间优化,如果数据个数小于10个,用直接插入排序
  if (keyi - left + 1 <= 10)
  {
    InsertSort(a + left, keyi - left + 1);
  }
  else
  {
    QuickSort1(a, left, keyi - 1);
  }
  if (right - (keyi + 1) + 1 <= 10)
  {
    InsertSort(a + keyi + 1, right - (keyi + 1) + 1);
  }
  else
  {
    QuickSort1(a, keyi + 1, right);
  }
}
 // //Hoare
int PartSort1(SortDataType* a, int left, int right)
{
   随机选key
  //int randi = left + (rand() % (right - left));
  随机选到key后,把key放到左边的位置
  //Swap(&a[left], &a[randi]);
  // 三数取中
  int midi = GetMidNumi(a, left, right);
  //把key值挪到left位置
  if (midi != left)
    Swap(&a[midi], &a[left]);
  //出现了随机选key和三数取中选key的原因:假如要排的数是已经有序或者完全逆序,
  //使用固定的选left下标的值为key的话,快排的时间复杂度就是O(N^2)
  //为了优化快排,就采取随机选key或者三数取中的方法
  //这是一轮
  //铁律:左边做keyi值右边先走,右边做key值左边先走,能保证L和R相遇位置一定比keyi小
  //原因:情况1.R先走,找小,找到了,然后到L走,L找大,找到了,交换
  //L和R相遇的位置,就一定是比key小的
  int keyi = left;
  while (left < right)
  {
    //排升序
    //右边找小
    //必须要给定left<right这个条件,否则如果是1 2 3 4 5这组数据,right会--到越界
    //必须要给等于号,否则可能会死循环
    //比如这组数据: 5 1 2 5 8 9 5 6 8
    //停下来的位置都是跟key相同的,两个相同的交换还是一样,就产生了死循环
    while (left < right && a[right] >= a[keyi])
      --right;
    //左边找大
    //必须要给定left<right这个条件,否则如果是5 4 3 2 1这组数据,left会++到越界
    while (left < right && a[left] <= a[keyi])
      ++left;
    //找到之后交换,实现了比key小的在左边,比key大的在右边
    Swap(&a[left], &a[right]);
  }
  //退出循环就是left == right 了,那就交换keyi和left或者keyi和right都行
  Swap(&a[keyi], &a[left]);
  // [begin, keyi-1] keyi [keyi+1, end] 
  //完成了一轮排序,找到了一个keyi,返回
  //注意,返回的是下标,此时keyi经过交换之后,key的下标在left/right位置
  //所有返回的是left/right,而不是返回keyi,或者你可以更新keyi然后返回
  keyi = left;
  return keyi;
}

2.挖坑法(推荐)

挖坑法:顾名思义,挖坑,填坑的过程。


思路:fefb33bfcdbd4e7ba802df0869536a30.gif


首先选取一个key(三数取中),选出来保存之后,left就留下了一个坑位,(在实际的数据中left下标对应的值仍然存在,这里的填坑本意是覆盖),于Hoare法相似,左边做key,right先走,找比key小的,找到之后放在left这个坑位中,此时right又形成了一个新的坑位,然后轮到left找大,left找到之后,将数填入right这个坑中,此时left又形成了新的坑位,这样循环,直到left和right相遇。

结果:保证了key的左边比key小,右边比key大。然后再递归key的左右子区间即可。

实现代码:

//挖坑法的难点在于key只是一个临时变量,hole是坑的下标,变量和下标易于混淆
//右边找小左边找大的过程中,可能出现右边找小找不到最后找出数组范围了,所以要限制left<right
//同理左边找大也是
//挖坑法
void QuickSort2(SortDataType* a, int left, int right)
{
  //递归结束条件
  if (left >= right)
    return;
  int begin = left, end = right;
  // 三数取中
  int midi = GetMidNumi(a, left, right);
  //把key值挪到left位置
  if (midi != left)
    Swap(&a[midi], &a[left]);
  //这个key只是一个临时变量
  int key = a[left];
  int hole = left; // 坑位
  while (left < right)
  {
    // 右边找小
    while (left < right && a[right] >= key)
      right--;
    //找到了,填坑
    a[hole] = a[right];
    hole = right;
    // 左边找大
    while (left < right && a[left] <= key)
      left++;
    //找到了,填坑
    a[hole] = a[left];
    hole = left;
  }
  //把key放到最后的坑里面
  a[hole] = key;
  if (hole - 1 - begin <= 10)
  {
    InsertSort(a + begin, hole - 1 - begin + 1);
  }
  else
  {
    QuickSort2(a, begin, hole - 1);
  }
  if (end - hole + 1 <= 10)
  {
    InsertSort(a + hole + 1, end - hole + 1 +1);
  }
  else
  {
    QuickSort2(a, hole + 1, end);
  }
}

3. 前后指针法(力荐)

前后指针法是相对来说最好实现,细节不需要考虑那么多的方法。

e4303cdd44a94a13bf4a655717b2e205.gif

思路:首先,给定两个下标prev和cur(说是前后指针法,是为了方便理解,其实指针法也不一定非得要指针) ,prev存left位置的下标,cur = prev 的下一个位置的下标。

key也是使用三数取中法来求key,然后放到left位置。


其次:cur先走,往后找比key小的;

1.如果比key小,先++prev,再交换cur和prev对应的值,最后++cur。

2.如果比key大,直接++cur。


这样不断循环,直到cur大于right为止。

 最后将keyi对应的key和prev对应的值交换。(重点)

实现了比key小的在左边,比key大的在右边。

你会发现prev和cur就像一个车轮,不断将比key小的数转到左边,比key大的数转到右边。

实现代码

void QuickSort3(SortDataType* a, int left, int right)
{
  //递归结束条件
  if (left >= right)
    return;
  int begin = left, end = right;
  //三数取中法求key
  int midi = GetMidNumi(a, left, right);
  if(midi!=left)
    Swap(&a[midi], &a[left]);
  int keyi = left;
  int prev = left;
  int cur = prev + 1;
  while (cur <= right)
  {
    //也可以这样写
    if (a[cur] < a[keyi] && ++prev != cur)
      Swap(&a[prev], &a[cur]);
    ++cur;
    //下面这样写逻辑比较清晰,好懂
    //if (a[cur] < a[keyi])
    //{
    //  ++prev;
    //  //自己跟自己没有交换的必要,浪费时间
    //  if(cur != prev)
    //    Swap(&a[prev], &a[cur]);
    //  ++cur;
    //}
    //else
    //{
    //  ++cur;
    //}
  }
  //切记不能交换
  //Swap(&a[prev], &key);
  //key只是一个临时变量,交换了它,跟没交换一样,因为跟临时变量交换与数组的交换无关
  Swap(&a[prev], &a[keyi]);
  keyi = prev;
  if (keyi - 1 - begin + 1 <= 10)
  {
    InsertSort(a, keyi - 1 - begin + 1);
  }
  else
  {
    QuickSort3(a, begin, keyi - 1);
  }
  if (end - (keyi + 1) + 1 <= 10)
  {
    InsertSort(a, end - (keyi + 1) + 1);
  }
  else
  {
    QuickSort3(a, keyi + 1, end);
  }
}

快速排序非递归法

思路:对于递归方法来说,每次递归左右子区间需要建立栈帧,所以我们的非递归方法可以模拟递归的栈。

建立一个栈。


首先将left和right下标入栈,由于栈的特性是后进先出,所以需要先入right再入left。

(如果不想考虑那么多,可以用一个结构体存储left和right的下标。(这个可以下去尝试))


取出栈顶的left和right元素后,使用上面的三种排序方法中的任意一种来进行第一轮排序。 第一轮排序完成后, 就获得了下面的区间:


【left, keyi-1】 keyi 【keyi+1,right】

类似栈一样,先递归左子区间,所以需要先入栈右子区间,再入栈左子区间。

(栈是后进先出的特性)

不断入栈出栈的过程就实现了快排的递归。

a69990d1c75b480cac1b597413522378.gif

栈代码
void StackInit(ST* ps)//初始化
{
  assert(ps!=NULL);
  ps->a = NULL;
  ps->top = ps->capacity = 0;
  //ps->top可以初始化成-1,此时先++,再赋值
  //此时指向的就是栈顶元素
}
void StackDestroy(ST* ps)
{
  assert(ps);
  free(ps->a);
  ps->a = NULL;
  ps->top = ps->capacity = 0;
}
void CheckCapacity(ST**ps)//检查容量
{
  assert(ps != NULL);
  if ((*ps)->top == (*ps)->capacity)
  {
    STDataType newcapacity = (*ps)->capacity == 0 ? 4 : (*ps)->capacity * 2;
    STDataType* tmp = (STDataType*)realloc((*ps)->a,(sizeof(STDataType)*newcapacity));//申请的空间是存放STDataType的
    //不是用来存放结构体的
    //如果第一个参数是一个NULL,realloc的作用就跟malloc一样,所以可以传NULL
    assert(tmp != NULL);
    (*ps)->a = tmp;// 把新地址给ps->a
    (*ps)->capacity = newcapacity;
  }
}
void StackPush(ST* ps, STDataType x)//插入元素
{
  assert(ps);
  CheckCapacity(&ps);//这里如果传参传的是ps,相当于传值调用,在CheckCapacity函数内部申请的空间就无法返回来了。
  ps->a[ps->top] = x; // 先赋值,再++,因为ps->top初始化是0,就是指向栈顶元素的下一个。
  ps->top++;
}
void StackPop(ST* ps)//删除栈顶数据
{
  assert(ps);
  assert(!StackEmpty(ps));
  ps->top--;
}
STDataType StackTop(ST* ps)//取栈顶元素
{
  assert(ps);
  assert(!StackEmpty(ps)); //感叹号表达式让语句的逻辑相反
  return ps->a[ps->top - 1];
}
int StackSize(ST* ps)//计算栈有多少个数据
{
  assert(ps);
  assert(!StackEmpty(ps));
  return ps->top;
}
bool StackEmpty(ST* ps)//判断栈是否为空
{
  assert(ps);
  return ps->top == 0;
}
//快排非递归写法:模拟栈实现非递归
//思路:先求出一个keyi出来,然后分成左右两个子区间,分别入栈,入栈先入右区间再入左区间
//
int PartSort3(SortDataType* a, int left, int right)
{
  //三数取中法求key
  int midi = GetMidNumi(a, left, right);
  if (midi != left)
    Swap(&a[midi], &a[left]);
  int keyi = left;
  int prev = left;
  int cur = prev + 1;
  //1.cur指针指向的位置如果小于key,先++prev,然后Swap(cur,prev),然后再++cur
//2.cur指针指向的位置如果大于key,直接++cur
  while (cur <= right)
  {
    //也可以这样写
    if (a[cur] < a[keyi] && ++prev != cur)
      Swap(&a[prev], &a[cur]);
    ++cur;
    //下面这样写逻辑比较清晰,好懂
    //if (a[cur] < a[keyi])
    //{
    //  ++prev;
    //  //自己跟自己没有交换的必要,浪费时间
    //  if(cur != prev)
    //    Swap(&a[prev], &a[cur]);
    //  ++cur;
    //}
    //else
    //{
    //  ++cur;
    //}
  }
  //切记不能交换
  //Swap(&a[prev], &key);
  //key只是一个临时变量,交换了它,跟没交换一样,因为跟临时变量交换与数组的交换无关
  Swap(&a[prev], &a[keyi]);
  //更新keyi的下标
  keyi = prev;
  return keyi;
}
void QuickSortNonR(SortDataType* a, int left, int right)
{
  ST st;
  StackInit(&st);
  //入的时候是先右后左
  StackPush(&st, right);
  StackPush(&st, left);
  while (!StackEmpty(&st))
  {
    //出的时候是先左后右
    int begin = StackTop(&st);
    StackPop(&st);
    int end = StackTop(&st);
    StackPop(&st);
    //划分区间,这里的PartSort3其实就是第三种前后指针法分出来的
    int keyi = PartSort3(a, begin, end);
    //只有一个数据的时候就不用入栈了
    if (keyi + 1 < end)
    {
      StackPush(&st, end);
      StackPush(&st, keyi + 1);
    }
    if (begin < keyi - 1)
    {
      StackPush(&st, keyi - 1);
      StackPush(&st, begin);
    }
  }
  //当栈空了就排完了
  StackDestroy(&st);
}

快排复杂度

快排每排序一次,需要遍历n个数据,递归深度是logN,最坏情况下递归深度为N,所以最坏情况时间复杂度为O(N^2)。


但是快排可以优化,优化后递归的最大深度为N,所以快排时间复杂度为O(NlogN)


空间复杂度O(LogN)~O(N) (其中O(N)是最坏情况)


稳定性:不稳定

七、归并排序

归并排序是将一段区间分成若干个子问题,子问题再次分成子问题,这个是分治过程;最后分成的子问题只存在一个数时,就可以开始合并,合并的过程就是比较两个子问题的过程,合并完成后将合并的新数据拷贝到原数据即可。


递归实现归并排序

递归实现归并排序,就是把一个大的数组分治分治,不断分治下去成一个小的数组,

最后分治成只有一个数字为止,然后每一个数字之间两两合并成2个数字,两组数组的两个数字之间再合并成4个数字,以此类推,知道合并成最后一个大的数组为止。

e747350a2cf04e46a42f13d38f947de6.png

第一步:通过left和right下标找到数组中间位置的下标,以该下标为界限,划分成两组数据。


57d4e265fe094e1da09ac149669916d0.png

第二步:重复第一步的过程,但是先把左边的组彻底分完,再分右边的组,是二叉树的前序遍历的思想。


6bf6c61b84ab4130a658b0647124a730.png

第三大步:不断进行分治,直到分解到还剩一个元素时停下来,判断只有一个元素,就是当left>=right时。


1d29bc9351b74423b90f61f6b24eb755.png

第四步:两两比较,四四比较合并

注意:每次合并完都需要把tmp的数据拷贝回原数组。

image.gif

最后一步:两个子区间合并成总的区间:

注意:每次合并完都需要把tmp的数据拷贝回原数组。


image.gif

实现代码:

void _MergeSort(SortDataType* a, int left, int right, SortDataType* tmp)
{
  if (left >= right)
  {
    return;
  }
  int mid = (left + right) >> 1; // 右移一位相当于/2
  int begin1 = left, end1 = mid;
  int begin2 = mid + 1, end2 = right;
  int index = left; // tmp的下标,不能从0开始,因为有些归并是不会从0开始的。
  _MergeSort(a, begin1, end1, tmp);
  _MergeSort(a, begin2, end2, tmp);
  while (begin1 <= end1 && begin2 <= end2)
  {
    if (a[begin1] <= a[begin2])
    {
      tmp[index++] = a[begin1++];
    }
    else
    {
      tmp[index++] = a[begin2++];
    }
  }
  //到这里不知道是谁先结束的,所以都要判断
  while (begin1 <= end1)
  {
    tmp[index++] = a[begin1++];
  }
  while (begin2 <= end2)
  {
    tmp[index++] = a[begin2++];
  }
  //拷贝回去
  //for (int i = left; i <= right; ++i)
  //{
  //  a[i] = tmp[i];
  //}
  // source, destination , size
  //每次归并完都拷贝一次
  memcpy(a + left, tmp + left, sizeof(SortDataType) * (right - left + 1));
}
void MergeSort(SortDataType* a, int n)
{
  SortDataType* tmp = (SortDataType*)malloc(sizeof(SortDataType) * n);
  _MergeSort(a, 0, n - 1, tmp);
}

非递归实现归并排序

对于递归实现归并排序来说,是把大问题分成小问题,是自上往下分的。

而对于非递归来说,是从小问题开始合并成大问题,是从下往上分的。

以上面的数字为例:

大致思路如下:


24602599521e4370a02a2c37a1f3e0cd.png

非递归难点1:


但面临第一个问题:

如何选择从一一开始比较到两两开始比较


选择用gap

gap表示每次归并时每组的数据个数

初始时gap = 1,表示第一次是一一比较,每合并完一轮,gap*2,下一轮进行两两比较,以此类推。


非递归难点2:


不过,第二个理解的难点在于:begin1和end1,begin2和end2该如何选择的问题!

65608018666a4cfaafd5ea87833c4df8.png

首先是i每次跳跃2×gap,因为一开始是一一比较,比较完一次相当于比较了两个数据,

而gap的含义就是每次合并时每组的数据个数!

那么就需要跳过2 ×gap的长度。


其次是begin1 和end1,begin1 = i 好理解;

end1 = i+gap-1是这样的:i+gap表示从begin1开始的往后的gap个数据, 由于是数据,那么-1才是下标。

而begin2 = i+gap也好理解,end1的后面一个就是begin2;

end2 = i+2*gap-1,就是从i位置开始,跳跃2×gap的数据个数到达最后一个需要比较的数据,-1就是这个最后的数据的下标。

非递归难点3:

难点3在于边界如何处理

先讲讲归并完一串数字如何拷贝回原数组:

1.一次性拷贝法,也叫梭哈拷贝法(不推荐)
2.每合并一次,就拷贝一次(推荐)

1.梭哈拷贝法:就是到合并完所有的数据之后再一次性拷贝回原数组,简单粗暴。


cc5a96f9fc2142bdaf7ea37f0b514652.png

2.每合并一次就拷贝一次:在一一合并成两个有序数据之后,就拷贝会原数组。

e341b74471df44cb9e10e386dc8a6abd.png

这里的边界有三种情况:

第一种:end1越界了,如下情况,当合并到四四比较时,begin1刚好为末位置,那么end1开始都越界了:


image.png


这里的处理方法有两种,但不同的方法是根据如何将归并好的数据拷贝回原数组决定的。


如果是梭哈拷贝法,不管哪种情况,都要修正过来。


先说end1越界的情况,如果是采用梭哈拷贝法一次性拷贝会原数组,就要让end1修正到

end1 = n-1 ,让begin2和end2修正到一个不存在的区间,比如:

begin2 = n ,end2 = n-1。这样做的目的是不让begin2、end2这个区间进入循环,防止拷贝到界外的数据。

如下:

image.png

begin2 和end2的修正当然不唯一,只要修正到一个不存在的区间即可。

第二种:begin2越界

可能发生的begin2越界如下:


image.png

第二种情况处理方式与第一种相同,在梭哈拷贝法的前提下,需要修正begin2 、end2这两个数据到一个不存在的区间,防止它们被拷贝。

比如:begin2 = n,end2 = n-1。

如下:

4e30be6e071649899132e5c4c4bb8caf.png

第三种:end2越界


a25005833fec4fa49c4d25d83937c626.png

此时只需要把end2修正到n-1位置即可,

如下:

image.png

注意:begin1是不可能越界的,begin1是不可能越界的,begin1是不可能越界的,因为如果begin1越界了,那后面的end1,begin2,end2全都越界了,那还归并啥!

实现代码

梭哈写法代码如下:

void MergeSortNonR(SortDataType* a, int n)
{
  SortDataType* tmp = (SortDataType*)malloc(sizeof(SortDataType) * n);
  assert(tmp);
  int gap = 1;
  //gap 是归并过程中,每组数据的个数
  while (gap < n)
  {
    for (int i = 0; i < n; i+=2*gap)
    {
      //理解难点
      //当gap为2时,i每次都会走2步,相当于跳过一个归并组
      int begin1 = i, end1 = i + gap - 1;
      int begin2 = i + gap, end2 = i + 2 * gap - 1;
      int index = i;
      //梭哈修正写法,但是不推荐
      if (end1 >= n)
      {
        end1 = n - 1;
        begin2 = n;
        end2 = n - 1;
      }
      else if (begin2 >= n)
      {
        begin2 = n;
        end2 = n - 1;
      }
      else if (end2 >= n)
      {
        end2 = n - 1;
      }
      while (begin1 <= end1 && begin2 <= end2)
      {
        if (a[begin1] <= a[begin2])
        {
          tmp[index++] = a[begin1++];
        }
        else
        {
          tmp[index++] = a[begin2++];
        }
      }
      //到这里不知道是谁先结束的,所以都要判断
      while (begin1 <= end1)
      {
        tmp[index++] = a[begin1++];
      }
      while (begin2 <= end2)
      {
        tmp[index++] = a[begin2++];
      }
    }
    //不推荐
    //法1:梭哈法:一次性整体拷贝 
    memcpy(a, tmp, sizeof(SortDataType) * n);
    gap *= 2;
  }
  free(tmp);
  tmp = NULL; 
}

二、如果是每归并一次,就拷贝一次数据回到原数组的拷贝方法的话,处理情况就不同。

在合并一次拷贝一次的情况下:

1.end1 越界了


image.png

因为是合并一次拷贝一次,则前面的红色的数据已经全部从tmp临时数组拷贝回到原数组了,至于3这个数据,不需要再拷贝到tmp了,让他留在原来的地方即可。

所以处理方法是直接break

2.begin2 越界了

668e6911b95a48fa83cd317191afce88.png

与end1越界的情况相同,因为是合并一次拷贝一次,则前面的红色的数据已经全部从tmp临时数组拷贝回到原数组了,至于后面的数据,不需要再拷贝到tmp了,让他留在原来的地方即可。

所以直接break

3.end2越界

image.png

同样的,如果是end2越界,就需要修正end2到n-1位置,保证begin1 和begin2可比即可。

所以修正 :end2 = n-1

走一步拷贝一步的非递归写法如下:

void MergeSortNonR(SortDataType* a, int n)
{
  SortDataType* tmp = (SortDataType*)malloc(sizeof(SortDataType) * n);
  assert(tmp);
  int gap = 1;
  //gap 是归并过程中,每组数据的个数
  while (gap < n)
  {
    for (int i = 0; i < n; i+=2*gap)
    {
      //理解难点
      //当gap为2时,i每次都会走2步,相当于跳过一个归并组
      int begin1 = i, end1 = i + gap - 1;
      int begin2 = i + gap, end2 = i + 2 * gap - 1;
      int index = i;
      //法2:三种情况,但是前两种情况可以使用相同的方法解决
      //如果end1越界了,那就不归并了,
      //如果begin2越界了,那也不归并了
      if (end1 >= n || begin2 >= n)
      {
        break;
      }
      //如果end2越界了,让end2修正到n-1位置
      if (end2 >= n)
      {
        //修正
        end2 = n - 1;
      }
      while (begin1 <= end1 && begin2 <= end2)
      {
        if (a[begin1] <= a[begin2])
        {
          tmp[index++] = a[begin1++];
        }
        else
        {
          tmp[index++] = a[begin2++];
        }
      }
      //到这里不知道是谁先结束的,所以都要判断
      while (begin1 <= end1)
      {
        tmp[index++] = a[begin1++];
      }
      while (begin2 <= end2)
      {
        tmp[index++] = a[begin2++];
      }
      // destination  source  size
      //推荐
      //法2:归并一点,拷贝一点,需要画图理解
      //如果是end1 或begin2大于等于n的时候越界
      //不同于梭哈一次性拷贝,梭哈拷贝需要把所有的拷贝进tmp,必须再拷回去,虽然做了无用功,但是是必须做的,这也是比较挫的地方
      //这个法2没做无用功,既然end1或者begin2越界了,那就干脆不拷贝了
      memcpy(a + i, tmp + i, sizeof(SortDataType) * (end2 - i+1));
    }
    gap *= 2;
  }
  free(tmp);
  tmp = NULL; 
}

注意两种写法中,拷贝的代码放在了while循环的不同位置!

归并排序复杂度

归并排序具有稳定性,即对于两个及以上的相同数据,归并排序前后不会改变相同数据的相对位置,这个就是稳定性。

归并排序对数据的顺序是不敏感的。


归并排序时间复杂度为O(NlogN),从一一归并开始,每次归并都需要遍历所有数据,但由于是二路归并,所以n个数据的 ”高度“是logN,即没进行一层,就需要遍历一次所有数据,所以时间复杂度就是O(NlogN).


空间复杂度:O(N),因为需要开辟一个临时数组来保存合并好的值,所以空间复杂度是O(N).

八、计数排序

计数排序是对每个数据进行计算出现的次数的排序。

这里引入了绝对映射和相对映射的概念。先讲绝对映射:

绝对映射就是:针对一组数据,先遍历找出该组数据的最大值,开辟一块最大值+1的空间,用来对每个数据进行遍历计数。


image.png

获得每个数据出现的次数后,通过按顺序遍历Count这个计数数组,就可以对该数据进行排序了。


但是这里有一个问题,假如这组数据是 :


1 0 0 1 1 0 2 99999


那么我们开辟的空间是这组数据的最大值+1,也就是要开辟10W块空间!

这是一个惊人的数字,这样做消耗了大量的空间,有一种方法可以解决这样的问题:


相对映射可以解决。


相对映射就是,遍历一遍数据,找出max和min, 我们只需要开辟max-min+1的空间就足够了!


假如我们需要排序这样的数据


10 20 11 14 15 11 17 19 13


第一步:先遍历找出max 和min ,此时max = 30,min = 10

那么我们只需要开辟 max - min +1的空间就可以了。

这一块空间包含了所有在最大和最小值之间的值了。


相对映射处理法:

image.png

所以在排序较为集中的数据的时候,计数排序效率是最高的,甚至比快速排序还要高。

实现代码:所以在排序较为集中的数据的时候,计数排序效率是最高的,甚至比快速排序还要高。

实现代码:

void CountSort(SortDataType* a, int n)
{
  int min = a[0];
  int max = a[0];
//找max和min
  for (int i = 1; i < n; ++i)
  {
    if (min > a[i])
    {
      min = a[i];
    }
    if (max < a[i])
    {
      max = a[i];
    }
  }
  //calloc(num,size) ,自动初始化为0
  int range = max - min+1;
  //这里必须是max - min +1,假如max = 10,min = 0,max-min = 10,但是实际上有11个数据。
  //左闭,右闭区间,需要+1
  SortDataType* Count = (SortDataType*)calloc(range, sizeof(SortDataType));
  if (Count == NULL)
  {
    perror("malloc fail\n");
    exit(-1);
  }
  //计数
  for (int i = 0; i < n; ++i)
  {
    Count[a[i] - min]++;
  }
 //拷贝回原数组
  int j = 0;
  for (int i = 0; i < range; i++)
  {
    while (Count[i]--)
    {
      a[j++] = i+min;
    }
  }
}

计数排序也有缺点:计数排序更加适合那些排序的数据较为集中的数据,并且计数排序不能排浮点数,结构体这样的类型,只能排序整型。


计数排序复杂度

时间复杂度:遍历一遍数组找max和min,为O(N)

再遍历一遍数组进行计数,为O(N)

将计数后的数据按顺序放会原数组,为O(N)

所以计数排序时间复杂度为O(N)


开辟max-min+1个空间

空间复杂度为O(max-min+1)

八大排序总结:

稳定性是:一组数据进行了某种排序后,相同的元素的相对位置不改变,则该排序就是稳定的。比如:一组数据为: 2 1 5 9 3 5,如果两个5的相对位置没有改变,那就稳定。

网络异常,图片无法展示
|

判断排序算法是否稳定,需要回忆算法的思想,该算法是如何做到排序的过程。


冒泡排序:稳定。

原因:两两比较,然后进行交换,对于相同的数据,如果不交换,就可以做到稳定了。


直接选择排序:不稳定。

原因:假如一组数据为: 2 2 1 3 1,第一轮,选出最小的和最大的,然后分别和left和right下标对应的值交换,那么交换后第一个2 和第二个2的相对位置就改变了。


直接插入排序:稳定。

原因:对于相同的数,直接插入在其后面即可。可以做到稳定。


希尔排序:不稳定。

原因:在进行预排序的时候,相同的数据可能被分到不同的组,预排序完成后相同的数据的相对位置可能改变。


堆排序:不稳定。

原因:建堆过程就不稳定,假如建堆没有改变相同的数的相对顺序,那么堆排序的过程,假设建大根堆,那么根位置的数据与最后一个数据交换后,此时堆顶的元素是比较小的,需要向下调整,调整过程中也会出现相同数据的相对位置改变的情况。


归并排序:稳定。

原因:只要相同的元素不比较即可。


快排:不稳定。

原因:假如一组数据是这样的分布:

aea1edb4b45a4d849af40772a93f7426.png

在排完一趟后,最后一步需要将left和中间的某一个keyi应该在的位置交换,就造成了相对位置不同的问题。

相关文章
十大排序引出的问题()
十大排序引出的问题()
40 0
|
7月前
八大常见位运算总结(非常经典,建议收藏)
八大常见位运算总结(非常经典,建议收藏)
73 0
|
7月前
|
存储 算法 安全
【Java编程进阶之路 02】深入探索:红黑树如何重塑哈希表的性能边界
JDK 1.8之后,HashMap引入红黑树来优化性能,当链表长度超过阈值(默认为8)时,链表会转换为红黑树,从而提高高冲突时的查询效率。同时,HashMap也采用了扰动函数来增加哈希值的随机性,使键值对更均匀分布,提升性能。
84 0
|
7月前
|
算法 程序员
八大排序源码(含优化)
八大排序源码(含优化)
|
存储 移动开发 算法
八大排序(一)--------排序的基本概念与分类
八大排序(一)--------排序的基本概念与分类
79 0
|
机器学习/深度学习 存储 搜索推荐
数据结构与算法-八大排序
对于排序的了解一定要理解思想,能够很清楚它的时间复杂度和空间复杂度,稳定性等特性。 稳定的排序有:直接插入排序、冒泡排序、归并排序 不稳定的排序有:希尔排序、选择排序、堆排序、快速排序、计数排序
数据结构与算法-八大排序
|
算法 搜索推荐 C++
理解实现八大排序(一)
理解实现八大排序
83 0
|
存储 搜索推荐 算法
理解实现八大排序(二)
理解实现八大排序
61 0
|
机器学习/深度学习 算法
【经典八大排序】(1)
一 .直接插入排序 直接插入排序是从一段数据中将一个数据在合适的位置插入。
|
存储 人工智能 搜索推荐
【数据结构】经典八大排序(Plus版)(二)
【数据结构】经典八大排序(Plus版)(二)
【数据结构】经典八大排序(Plus版)(二)