六、快速排序
(以下为递归法)
快速排序是一种类似二叉树结构的排序。
思路: 在待排序数据中任取一个值作为基准值(key),按照一定的方式,将比key值小的数据放到左边,比key值大的放到右边,达到key值就是一个分割点,其左边比它小,右边比它大。然后以key为分割点分别对其左子区间和右子区间进行同样的操作。
1.Hoare法(不推荐)
Hoare法是快排的创始人Hoare提出的方法,这个方法有点难以理解,且有许多细节需要注意,不是很推荐该方法。
思路是:
给定两个下标,分别为left和right,记录最左边的下标和最右边的下标。选取一个值作为key(一般选最左边或者最右边的值作为key),其下标为keyi,如果是选左边做key,就让right先走,如果是选右边做key,就让左边先走。
假设选左边做key,right先走,找比key小的值,如果找到了,然后轮到左边left走,左边left找大,如果找到了,就交换left和right下标所对应的值。然后再重复该过程。
第一步:
第二步:
第三步:递归,先递归keyi的左边,再递归keyi的右边。
重复上述操作。
但是Hoare存在几个缺陷:
缺陷1.当数据为有序或者逆序的时候,我们每次选key都是选最左边或者最右边,这就导致了每排序完一次,keyi的位置仍然是最左边或者最右边,此时递归的次数就要递归n次,可能会导致栈溢出。
选基准值key的方法(快排的方法均可用)
所以我们需要每次去key的时候尽量取到中间的数,保证递归下去左右两个子区间是比较均匀的。
1、随机法
此时出现了两种取key的方法:
1.随机取key法:就是随机取一个key。
// 随机选key int randi = left + (rand() % (right - left)); //随机选到key后,把key放到左边的位置 Swap(&a[left], &a[randi]);
2. 三数取中(推荐)
2.(推荐)三数取中法,三数取中法就是以left,right,mid为下标的三个数取一个中间大的数作为key。
mid = (left+right)>>1 ;
a[left] = 6,a[right] = 8,a[mid] = 3;所以应该取的数是6。这样就保证了每次取到的数是比较中间的数,就不会出现当数据为顺序时递归深度太深出现栈溢出的情况。
//三数取中法取key //从左,右,中三个数选出一个不大不小的数作为key int GetMidNumi(int *a, int left, int right) { int mid = (left + right) / 2; //也可以这样写 , 右移一位除2,左移一位乘2,左移两位乘2^2,以此类推 //int mid = (left + right) >> 1; if (a[left] < a[right]) { if (a[left] > a[mid]) { return left; } else if(a[right] < a[mid]) { return right; } else { return mid; } } else { if (a[right] > a[mid]) { return right; } if (a[mid] > a[left]) { return left; } else { return mid; } } }
缺陷2、
前面说过,当用left作为key值时,right先走,且right找小,找到小了到left找大。
即:
while (left < right) { while (a[right] > a[keyi]) --right; while (a[left] < a[keyi]) ++left; Swap(&a[left], &a[right]); }
当排序的数据为 6 1 2 6 9 3 4 6 10 8 时,right向左边找小,找到的数据为6,left找大,找到的数据也为6,此时交换left和right之后,还是6不变,又重新循环right找小,left找大,这样永远会循环在6这个位置互相交换,就会出现死循环。
解决办法是加个等号。
如下:
while (left < right) { while (a[right] => a[keyi]) --right; while (a[left] <= a[keyi]) ++left; Swap(&a[left], &a[right]); }
缺陷3:
如果排序的数是 1 2 3 4 5
此时选1做key,先right找小,就会不断–,–这样会出现–到比left还小,就会出问题。
综合来看,需要这样改进:
while (left < right) { while (left < right && a[right] => a[keyi]) --right; while (left < right && a[left] <= a[keyi]) ++left; Swap(&a[left], &a[right]); }
小区间优化(每种方法都可用)
了解小区间优化之前, 我们需要知道一个问题:
当数据量很大的时候,比如有一千万个数据,我们需要对其进行排序:
使用递归的方法进行排序,难免出现递归深度深而出现效率降低的情况。
根据上图的情况可知,理想情况下,当有N个数据时,最小的递归深度是LogN。
此时,最后一层的递归次数是最多的,需要递归N/2次,也就是说,有100W个数据时,最后一层需要递归50W次!!那么倒数第二层需要递归25W次,倒数第三层需要递归12.5W次,假如我们能够把最后三层递归的次数消去,既能提高效率,也能减小递归消耗的栈空间。
所以当数据个数为10个以下时,就不需要用快排了,我们可以用直接插入排序来代替快排。
这就是为什么你在下面的代码能够看到当数据个数小于10,用插入排序的原因。
Hoare实现代码
void QuickSort1(SortDataType* a, int left, int right) { //递归结束条件 if (left >= right) return; int keyi = PartSort1(a, left, right); //递归下去 // [left, keyi-1] keyi [keyi+1, right] //小区间优化,如果数据个数小于10个,用直接插入排序 if (keyi - left + 1 <= 10) { InsertSort(a + left, keyi - left + 1); } else { QuickSort1(a, left, keyi - 1); } if (right - (keyi + 1) + 1 <= 10) { InsertSort(a + keyi + 1, right - (keyi + 1) + 1); } else { QuickSort1(a, keyi + 1, right); } } // //Hoare int PartSort1(SortDataType* a, int left, int right) { 随机选key //int randi = left + (rand() % (right - left)); 随机选到key后,把key放到左边的位置 //Swap(&a[left], &a[randi]); // 三数取中 int midi = GetMidNumi(a, left, right); //把key值挪到left位置 if (midi != left) Swap(&a[midi], &a[left]); //出现了随机选key和三数取中选key的原因:假如要排的数是已经有序或者完全逆序, //使用固定的选left下标的值为key的话,快排的时间复杂度就是O(N^2) //为了优化快排,就采取随机选key或者三数取中的方法 //这是一轮 //铁律:左边做keyi值右边先走,右边做key值左边先走,能保证L和R相遇位置一定比keyi小 //原因:情况1.R先走,找小,找到了,然后到L走,L找大,找到了,交换 //L和R相遇的位置,就一定是比key小的 int keyi = left; while (left < right) { //排升序 //右边找小 //必须要给定left<right这个条件,否则如果是1 2 3 4 5这组数据,right会--到越界 //必须要给等于号,否则可能会死循环 //比如这组数据: 5 1 2 5 8 9 5 6 8 //停下来的位置都是跟key相同的,两个相同的交换还是一样,就产生了死循环 while (left < right && a[right] >= a[keyi]) --right; //左边找大 //必须要给定left<right这个条件,否则如果是5 4 3 2 1这组数据,left会++到越界 while (left < right && a[left] <= a[keyi]) ++left; //找到之后交换,实现了比key小的在左边,比key大的在右边 Swap(&a[left], &a[right]); } //退出循环就是left == right 了,那就交换keyi和left或者keyi和right都行 Swap(&a[keyi], &a[left]); // [begin, keyi-1] keyi [keyi+1, end] //完成了一轮排序,找到了一个keyi,返回 //注意,返回的是下标,此时keyi经过交换之后,key的下标在left/right位置 //所有返回的是left/right,而不是返回keyi,或者你可以更新keyi然后返回 keyi = left; return keyi; }
2.挖坑法(推荐)
挖坑法:顾名思义,挖坑,填坑的过程。
思路:
首先选取一个key(三数取中),选出来保存之后,left就留下了一个坑位,(在实际的数据中left下标对应的值仍然存在,这里的填坑本意是覆盖),于Hoare法相似,左边做key,right先走,找比key小的,找到之后放在left这个坑位中,此时right又形成了一个新的坑位,然后轮到left找大,left找到之后,将数填入right这个坑中,此时left又形成了新的坑位,这样循环,直到left和right相遇。
结果:保证了key的左边比key小,右边比key大。然后再递归key的左右子区间即可。
实现代码:
//挖坑法的难点在于key只是一个临时变量,hole是坑的下标,变量和下标易于混淆 //右边找小左边找大的过程中,可能出现右边找小找不到最后找出数组范围了,所以要限制left<right //同理左边找大也是 //挖坑法 void QuickSort2(SortDataType* a, int left, int right) { //递归结束条件 if (left >= right) return; int begin = left, end = right; // 三数取中 int midi = GetMidNumi(a, left, right); //把key值挪到left位置 if (midi != left) Swap(&a[midi], &a[left]); //这个key只是一个临时变量 int key = a[left]; int hole = left; // 坑位 while (left < right) { // 右边找小 while (left < right && a[right] >= key) right--; //找到了,填坑 a[hole] = a[right]; hole = right; // 左边找大 while (left < right && a[left] <= key) left++; //找到了,填坑 a[hole] = a[left]; hole = left; } //把key放到最后的坑里面 a[hole] = key; if (hole - 1 - begin <= 10) { InsertSort(a + begin, hole - 1 - begin + 1); } else { QuickSort2(a, begin, hole - 1); } if (end - hole + 1 <= 10) { InsertSort(a + hole + 1, end - hole + 1 +1); } else { QuickSort2(a, hole + 1, end); } }
3. 前后指针法(力荐)
前后指针法是相对来说最好实现,细节不需要考虑那么多的方法。
思路:首先,给定两个下标prev和cur(说是前后指针法,是为了方便理解,其实指针法也不一定非得要指针) ,prev存left位置的下标,cur = prev 的下一个位置的下标。
key也是使用三数取中法来求key,然后放到left位置。
其次:cur先走,往后找比key小的;
1.如果比key小,先++prev,再交换cur和prev对应的值,最后++cur。
2.如果比key大,直接++cur。
这样不断循环,直到cur大于right为止。
最后将keyi对应的key和prev对应的值交换。(重点)
实现了比key小的在左边,比key大的在右边。
你会发现prev和cur就像一个车轮,不断将比key小的数转到左边,比key大的数转到右边。
实现代码
void QuickSort3(SortDataType* a, int left, int right) { //递归结束条件 if (left >= right) return; int begin = left, end = right; //三数取中法求key int midi = GetMidNumi(a, left, right); if(midi!=left) Swap(&a[midi], &a[left]); int keyi = left; int prev = left; int cur = prev + 1; while (cur <= right) { //也可以这样写 if (a[cur] < a[keyi] && ++prev != cur) Swap(&a[prev], &a[cur]); ++cur; //下面这样写逻辑比较清晰,好懂 //if (a[cur] < a[keyi]) //{ // ++prev; // //自己跟自己没有交换的必要,浪费时间 // if(cur != prev) // Swap(&a[prev], &a[cur]); // ++cur; //} //else //{ // ++cur; //} } //切记不能交换 //Swap(&a[prev], &key); //key只是一个临时变量,交换了它,跟没交换一样,因为跟临时变量交换与数组的交换无关 Swap(&a[prev], &a[keyi]); keyi = prev; if (keyi - 1 - begin + 1 <= 10) { InsertSort(a, keyi - 1 - begin + 1); } else { QuickSort3(a, begin, keyi - 1); } if (end - (keyi + 1) + 1 <= 10) { InsertSort(a, end - (keyi + 1) + 1); } else { QuickSort3(a, keyi + 1, end); } }
快速排序非递归法
思路:对于递归方法来说,每次递归左右子区间需要建立栈帧,所以我们的非递归方法可以模拟递归的栈。
建立一个栈。
首先将left和right下标入栈,由于栈的特性是后进先出,所以需要先入right再入left。
(如果不想考虑那么多,可以用一个结构体存储left和right的下标。(这个可以下去尝试))
取出栈顶的left和right元素后,使用上面的三种排序方法中的任意一种来进行第一轮排序。 第一轮排序完成后, 就获得了下面的区间:
【left, keyi-1】 keyi 【keyi+1,right】
类似栈一样,先递归左子区间,所以需要先入栈右子区间,再入栈左子区间。
(栈是后进先出的特性)
不断入栈出栈的过程就实现了快排的递归。
栈代码 void StackInit(ST* ps)//初始化 { assert(ps!=NULL); ps->a = NULL; ps->top = ps->capacity = 0; //ps->top可以初始化成-1,此时先++,再赋值 //此时指向的就是栈顶元素 } void StackDestroy(ST* ps) { assert(ps); free(ps->a); ps->a = NULL; ps->top = ps->capacity = 0; } void CheckCapacity(ST**ps)//检查容量 { assert(ps != NULL); if ((*ps)->top == (*ps)->capacity) { STDataType newcapacity = (*ps)->capacity == 0 ? 4 : (*ps)->capacity * 2; STDataType* tmp = (STDataType*)realloc((*ps)->a,(sizeof(STDataType)*newcapacity));//申请的空间是存放STDataType的 //不是用来存放结构体的 //如果第一个参数是一个NULL,realloc的作用就跟malloc一样,所以可以传NULL assert(tmp != NULL); (*ps)->a = tmp;// 把新地址给ps->a (*ps)->capacity = newcapacity; } } void StackPush(ST* ps, STDataType x)//插入元素 { assert(ps); CheckCapacity(&ps);//这里如果传参传的是ps,相当于传值调用,在CheckCapacity函数内部申请的空间就无法返回来了。 ps->a[ps->top] = x; // 先赋值,再++,因为ps->top初始化是0,就是指向栈顶元素的下一个。 ps->top++; } void StackPop(ST* ps)//删除栈顶数据 { assert(ps); assert(!StackEmpty(ps)); ps->top--; } STDataType StackTop(ST* ps)//取栈顶元素 { assert(ps); assert(!StackEmpty(ps)); //感叹号表达式让语句的逻辑相反 return ps->a[ps->top - 1]; } int StackSize(ST* ps)//计算栈有多少个数据 { assert(ps); assert(!StackEmpty(ps)); return ps->top; } bool StackEmpty(ST* ps)//判断栈是否为空 { assert(ps); return ps->top == 0; } //快排非递归写法:模拟栈实现非递归 //思路:先求出一个keyi出来,然后分成左右两个子区间,分别入栈,入栈先入右区间再入左区间 // int PartSort3(SortDataType* a, int left, int right) { //三数取中法求key int midi = GetMidNumi(a, left, right); if (midi != left) Swap(&a[midi], &a[left]); int keyi = left; int prev = left; int cur = prev + 1; //1.cur指针指向的位置如果小于key,先++prev,然后Swap(cur,prev),然后再++cur //2.cur指针指向的位置如果大于key,直接++cur while (cur <= right) { //也可以这样写 if (a[cur] < a[keyi] && ++prev != cur) Swap(&a[prev], &a[cur]); ++cur; //下面这样写逻辑比较清晰,好懂 //if (a[cur] < a[keyi]) //{ // ++prev; // //自己跟自己没有交换的必要,浪费时间 // if(cur != prev) // Swap(&a[prev], &a[cur]); // ++cur; //} //else //{ // ++cur; //} } //切记不能交换 //Swap(&a[prev], &key); //key只是一个临时变量,交换了它,跟没交换一样,因为跟临时变量交换与数组的交换无关 Swap(&a[prev], &a[keyi]); //更新keyi的下标 keyi = prev; return keyi; } void QuickSortNonR(SortDataType* a, int left, int right) { ST st; StackInit(&st); //入的时候是先右后左 StackPush(&st, right); StackPush(&st, left); while (!StackEmpty(&st)) { //出的时候是先左后右 int begin = StackTop(&st); StackPop(&st); int end = StackTop(&st); StackPop(&st); //划分区间,这里的PartSort3其实就是第三种前后指针法分出来的 int keyi = PartSort3(a, begin, end); //只有一个数据的时候就不用入栈了 if (keyi + 1 < end) { StackPush(&st, end); StackPush(&st, keyi + 1); } if (begin < keyi - 1) { StackPush(&st, keyi - 1); StackPush(&st, begin); } } //当栈空了就排完了 StackDestroy(&st); }
快排复杂度
快排每排序一次,需要遍历n个数据,递归深度是logN,最坏情况下递归深度为N,所以最坏情况时间复杂度为O(N^2)。
但是快排可以优化,优化后递归的最大深度为N,所以快排时间复杂度为O(NlogN)
空间复杂度O(LogN)~O(N) (其中O(N)是最坏情况)
稳定性:不稳定
七、归并排序
归并排序是将一段区间分成若干个子问题,子问题再次分成子问题,这个是分治过程;最后分成的子问题只存在一个数时,就可以开始合并,合并的过程就是比较两个子问题的过程,合并完成后将合并的新数据拷贝到原数据即可。
递归实现归并排序
递归实现归并排序,就是把一个大的数组分治分治,不断分治下去成一个小的数组,
最后分治成只有一个数字为止,然后每一个数字之间两两合并成2个数字,两组数组的两个数字之间再合并成4个数字,以此类推,知道合并成最后一个大的数组为止。
第一步:通过left和right下标找到数组中间位置的下标,以该下标为界限,划分成两组数据。
第二步:重复第一步的过程,但是先把左边的组彻底分完,再分右边的组,是二叉树的前序遍历的思想。
第三大步:不断进行分治,直到分解到还剩一个元素时停下来,判断只有一个元素,就是当left>=right时。
第四步:两两比较,四四比较合并
注意:每次合并完都需要把tmp的数据拷贝回原数组。
最后一步:两个子区间合并成总的区间:
注意:每次合并完都需要把tmp的数据拷贝回原数组。
实现代码:
void _MergeSort(SortDataType* a, int left, int right, SortDataType* tmp) { if (left >= right) { return; } int mid = (left + right) >> 1; // 右移一位相当于/2 int begin1 = left, end1 = mid; int begin2 = mid + 1, end2 = right; int index = left; // tmp的下标,不能从0开始,因为有些归并是不会从0开始的。 _MergeSort(a, begin1, end1, tmp); _MergeSort(a, begin2, end2, tmp); while (begin1 <= end1 && begin2 <= end2) { if (a[begin1] <= a[begin2]) { tmp[index++] = a[begin1++]; } else { tmp[index++] = a[begin2++]; } } //到这里不知道是谁先结束的,所以都要判断 while (begin1 <= end1) { tmp[index++] = a[begin1++]; } while (begin2 <= end2) { tmp[index++] = a[begin2++]; } //拷贝回去 //for (int i = left; i <= right; ++i) //{ // a[i] = tmp[i]; //} // source, destination , size //每次归并完都拷贝一次 memcpy(a + left, tmp + left, sizeof(SortDataType) * (right - left + 1)); } void MergeSort(SortDataType* a, int n) { SortDataType* tmp = (SortDataType*)malloc(sizeof(SortDataType) * n); _MergeSort(a, 0, n - 1, tmp); }
非递归实现归并排序
对于递归实现归并排序来说,是把大问题分成小问题,是自上往下分的。
而对于非递归来说,是从小问题开始合并成大问题,是从下往上分的。
以上面的数字为例:
大致思路如下:
非递归难点1:
但面临第一个问题:
如何选择从一一开始比较到两两开始比较
选择用gap
gap表示每次归并时每组的数据个数
初始时gap = 1,表示第一次是一一比较,每合并完一轮,gap*2,下一轮进行两两比较,以此类推。
非递归难点2:
不过,第二个理解的难点在于:begin1和end1,begin2和end2该如何选择的问题!
首先是i每次跳跃2×gap,因为一开始是一一比较,比较完一次相当于比较了两个数据,
而gap的含义就是每次合并时每组的数据个数!
那么就需要跳过2 ×gap的长度。
其次是begin1 和end1,begin1 = i 好理解;
end1 = i+gap-1是这样的:i+gap表示从begin1开始的往后的gap个数据, 由于是数据,那么-1才是下标。
而begin2 = i+gap也好理解,end1的后面一个就是begin2;
end2 = i+2*gap-1,就是从i位置开始,跳跃2×gap的数据个数到达最后一个需要比较的数据,-1就是这个最后的数据的下标。
非递归难点3:
难点3在于边界如何处理
先讲讲归并完一串数字如何拷贝回原数组:
1.一次性拷贝法,也叫梭哈拷贝法(不推荐)
2.每合并一次,就拷贝一次(推荐)
1.梭哈拷贝法:就是到合并完所有的数据之后再一次性拷贝回原数组,简单粗暴。
2.每合并一次就拷贝一次:在一一合并成两个有序数据之后,就拷贝会原数组。
这里的边界有三种情况:
第一种:end1越界了,如下情况,当合并到四四比较时,begin1刚好为末位置,那么end1开始都越界了:
这里的处理方法有两种,但不同的方法是根据如何将归并好的数据拷贝回原数组决定的。
如果是梭哈拷贝法,不管哪种情况,都要修正过来。
先说end1越界的情况,如果是采用梭哈拷贝法一次性拷贝会原数组,就要让end1修正到
end1 = n-1 ,让begin2和end2修正到一个不存在的区间,比如:
begin2 = n ,end2 = n-1。这样做的目的是不让begin2、end2这个区间进入循环,防止拷贝到界外的数据。
如下:
begin2 和end2的修正当然不唯一,只要修正到一个不存在的区间即可。
第二种:begin2越界
可能发生的begin2越界如下:
第二种情况处理方式与第一种相同,在梭哈拷贝法的前提下,需要修正begin2 、end2这两个数据到一个不存在的区间,防止它们被拷贝。
比如:begin2 = n,end2 = n-1。
如下:
第三种:end2越界
此时只需要把end2修正到n-1位置即可,
如下:
注意:begin1是不可能越界的,begin1是不可能越界的,begin1是不可能越界的,因为如果begin1越界了,那后面的end1,begin2,end2全都越界了,那还归并啥!
实现代码
梭哈写法代码如下:
void MergeSortNonR(SortDataType* a, int n) { SortDataType* tmp = (SortDataType*)malloc(sizeof(SortDataType) * n); assert(tmp); int gap = 1; //gap 是归并过程中,每组数据的个数 while (gap < n) { for (int i = 0; i < n; i+=2*gap) { //理解难点 //当gap为2时,i每次都会走2步,相当于跳过一个归并组 int begin1 = i, end1 = i + gap - 1; int begin2 = i + gap, end2 = i + 2 * gap - 1; int index = i; //梭哈修正写法,但是不推荐 if (end1 >= n) { end1 = n - 1; begin2 = n; end2 = n - 1; } else if (begin2 >= n) { begin2 = n; end2 = n - 1; } else if (end2 >= n) { end2 = n - 1; } while (begin1 <= end1 && begin2 <= end2) { if (a[begin1] <= a[begin2]) { tmp[index++] = a[begin1++]; } else { tmp[index++] = a[begin2++]; } } //到这里不知道是谁先结束的,所以都要判断 while (begin1 <= end1) { tmp[index++] = a[begin1++]; } while (begin2 <= end2) { tmp[index++] = a[begin2++]; } } //不推荐 //法1:梭哈法:一次性整体拷贝 memcpy(a, tmp, sizeof(SortDataType) * n); gap *= 2; } free(tmp); tmp = NULL; }
二、如果是每归并一次,就拷贝一次数据回到原数组的拷贝方法的话,处理情况就不同。
在合并一次拷贝一次的情况下:
1.end1 越界了
因为是合并一次拷贝一次,则前面的红色的数据已经全部从tmp临时数组拷贝回到原数组了,至于3这个数据,不需要再拷贝到tmp了,让他留在原来的地方即可。
所以处理方法是直接break
2.begin2 越界了
与end1越界的情况相同,因为是合并一次拷贝一次,则前面的红色的数据已经全部从tmp临时数组拷贝回到原数组了,至于后面的数据,不需要再拷贝到tmp了,让他留在原来的地方即可。
所以直接break
3.end2越界
同样的,如果是end2越界,就需要修正end2到n-1位置,保证begin1 和begin2可比即可。
所以修正 :end2 = n-1
走一步拷贝一步的非递归写法如下:
void MergeSortNonR(SortDataType* a, int n) { SortDataType* tmp = (SortDataType*)malloc(sizeof(SortDataType) * n); assert(tmp); int gap = 1; //gap 是归并过程中,每组数据的个数 while (gap < n) { for (int i = 0; i < n; i+=2*gap) { //理解难点 //当gap为2时,i每次都会走2步,相当于跳过一个归并组 int begin1 = i, end1 = i + gap - 1; int begin2 = i + gap, end2 = i + 2 * gap - 1; int index = i; //法2:三种情况,但是前两种情况可以使用相同的方法解决 //如果end1越界了,那就不归并了, //如果begin2越界了,那也不归并了 if (end1 >= n || begin2 >= n) { break; } //如果end2越界了,让end2修正到n-1位置 if (end2 >= n) { //修正 end2 = n - 1; } while (begin1 <= end1 && begin2 <= end2) { if (a[begin1] <= a[begin2]) { tmp[index++] = a[begin1++]; } else { tmp[index++] = a[begin2++]; } } //到这里不知道是谁先结束的,所以都要判断 while (begin1 <= end1) { tmp[index++] = a[begin1++]; } while (begin2 <= end2) { tmp[index++] = a[begin2++]; } // destination source size //推荐 //法2:归并一点,拷贝一点,需要画图理解 //如果是end1 或begin2大于等于n的时候越界 //不同于梭哈一次性拷贝,梭哈拷贝需要把所有的拷贝进tmp,必须再拷回去,虽然做了无用功,但是是必须做的,这也是比较挫的地方 //这个法2没做无用功,既然end1或者begin2越界了,那就干脆不拷贝了 memcpy(a + i, tmp + i, sizeof(SortDataType) * (end2 - i+1)); } gap *= 2; } free(tmp); tmp = NULL; }
注意两种写法中,拷贝的代码放在了while循环的不同位置!
归并排序复杂度
归并排序具有稳定性,即对于两个及以上的相同数据,归并排序前后不会改变相同数据的相对位置,这个就是稳定性。
归并排序对数据的顺序是不敏感的。
归并排序时间复杂度为O(NlogN),从一一归并开始,每次归并都需要遍历所有数据,但由于是二路归并,所以n个数据的 ”高度“是logN,即没进行一层,就需要遍历一次所有数据,所以时间复杂度就是O(NlogN).
空间复杂度:O(N),因为需要开辟一个临时数组来保存合并好的值,所以空间复杂度是O(N).
八、计数排序
计数排序是对每个数据进行计算出现的次数的排序。
这里引入了绝对映射和相对映射的概念。先讲绝对映射:
绝对映射就是:针对一组数据,先遍历找出该组数据的最大值,开辟一块最大值+1的空间,用来对每个数据进行遍历计数。
获得每个数据出现的次数后,通过按顺序遍历Count这个计数数组,就可以对该数据进行排序了。
但是这里有一个问题,假如这组数据是 :
1 0 0 1 1 0 2 99999
那么我们开辟的空间是这组数据的最大值+1,也就是要开辟10W块空间!
这是一个惊人的数字,这样做消耗了大量的空间,有一种方法可以解决这样的问题:
相对映射可以解决。
相对映射就是,遍历一遍数据,找出max和min, 我们只需要开辟max-min+1的空间就足够了!
假如我们需要排序这样的数据
10 20 11 14 15 11 17 19 13
第一步:先遍历找出max 和min ,此时max = 30,min = 10
那么我们只需要开辟 max - min +1的空间就可以了。
这一块空间包含了所有在最大和最小值之间的值了。
相对映射处理法:
所以在排序较为集中的数据的时候,计数排序效率是最高的,甚至比快速排序还要高。
实现代码:所以在排序较为集中的数据的时候,计数排序效率是最高的,甚至比快速排序还要高。
实现代码:
void CountSort(SortDataType* a, int n) { int min = a[0]; int max = a[0]; //找max和min for (int i = 1; i < n; ++i) { if (min > a[i]) { min = a[i]; } if (max < a[i]) { max = a[i]; } } //calloc(num,size) ,自动初始化为0 int range = max - min+1; //这里必须是max - min +1,假如max = 10,min = 0,max-min = 10,但是实际上有11个数据。 //左闭,右闭区间,需要+1 SortDataType* Count = (SortDataType*)calloc(range, sizeof(SortDataType)); if (Count == NULL) { perror("malloc fail\n"); exit(-1); } //计数 for (int i = 0; i < n; ++i) { Count[a[i] - min]++; } //拷贝回原数组 int j = 0; for (int i = 0; i < range; i++) { while (Count[i]--) { a[j++] = i+min; } } }
计数排序也有缺点:计数排序更加适合那些排序的数据较为集中的数据,并且计数排序不能排浮点数,结构体这样的类型,只能排序整型。
计数排序复杂度
时间复杂度:遍历一遍数组找max和min,为O(N)
再遍历一遍数组进行计数,为O(N)
将计数后的数据按顺序放会原数组,为O(N)
所以计数排序时间复杂度为O(N)
开辟max-min+1个空间
空间复杂度为O(max-min+1)
八大排序总结:
稳定性是:一组数据进行了某种排序后,相同的元素的相对位置不改变,则该排序就是稳定的。比如:一组数据为: 2 1 5 9 3 5,如果两个5的相对位置没有改变,那就稳定。
判断排序算法是否稳定,需要回忆算法的思想,该算法是如何做到排序的过程。
冒泡排序:稳定。
原因:两两比较,然后进行交换,对于相同的数据,如果不交换,就可以做到稳定了。
直接选择排序:不稳定。
原因:假如一组数据为: 2 2 1 3 1,第一轮,选出最小的和最大的,然后分别和left和right下标对应的值交换,那么交换后第一个2 和第二个2的相对位置就改变了。
直接插入排序:稳定。
原因:对于相同的数,直接插入在其后面即可。可以做到稳定。
希尔排序:不稳定。
原因:在进行预排序的时候,相同的数据可能被分到不同的组,预排序完成后相同的数据的相对位置可能改变。
堆排序:不稳定。
原因:建堆过程就不稳定,假如建堆没有改变相同的数的相对顺序,那么堆排序的过程,假设建大根堆,那么根位置的数据与最后一个数据交换后,此时堆顶的元素是比较小的,需要向下调整,调整过程中也会出现相同数据的相对位置改变的情况。
归并排序:稳定。
原因:只要相同的元素不比较即可。
快排:不稳定。
原因:假如一组数据是这样的分布:
在排完一趟后,最后一步需要将left和中间的某一个keyi应该在的位置交换,就造成了相对位置不同的问题。