带你读《5G 系统技术原理与实现》——2.2.2 FR1 与FR2 信道带宽

简介: 带你读《5G 系统技术原理与实现》——2.2.2 FR1 与FR2 信道带宽

2.2.2 FR1 与FR2 信道带宽


FR1 与FR2 的信道带宽包含很多概念:最大传输带宽配置(Maximum Transmission

Bandwidth Confi guration)是指当SCS(Sub-Carrier Space,子载波间隔)确定时,信道带宽可以配置的最大RB(Resource Block,资源块)的数量;针对不同的最大传输带宽配置和最小保护带宽。5G 信道带宽、传输带宽和保护带宽的关系如图2-3 所示。

image.png

图2-3 5G 信道带宽、传输带宽和保护带宽的关系


(1)FR1 最大传输带宽配置

FR1 的最大传输带宽配置与SCS 有关,在不同的信道带宽下,其可配置的最大RB 数如表2-5 所示。

image.png

表2-5 FR1 最大传输带宽配置

(2)FR2 最大传输带宽配置

FR2 的最大传输带宽配置与SCS 有关,在不同的信道带宽下,其可配置的最大RB 数如表2-6 所示。

表2-6 FR2 最大传输带宽配置

image.png

(3)FR1 针对不同的最大传输带宽设置的最小保护带宽

此种场景下,最小保护带宽=(BWChannel×1000-NRB×SCS×12)/ 2-SCS/2。FR1 的最小保护带宽配置与SCS 有关,在不同的信道带宽下,其可配置的最小保护带宽如表2-7

所示。


表2-7 FR1 针对不同的最大传输带宽设置的最小保护带宽

image.png

(4)FR2 针对不同的最大传输带宽设置的最小保护带宽

此种场景下,最小保护带宽=(BWChannel×1000-NRB×SCS×12)/ 2-SCS/2。FR2 的最小保护带宽配置与SCS 有关,在不同的信道带宽下,其可配置的最小保护带宽如表2-8 所示。


表2-8 FR2 针对不同的最大传输带宽设置的最小保护带宽

image.png

这里需要特别说明一下,当SSB 的SCS 为240kHz 时,此时的最小保护带宽计算需要考虑SSB 的SCS。针对此场景,最小保护带宽须参考表2-9。


表2-9 SCS=240kHz 时,FR2 的最小保护带宽

image.png


相关文章
|
3月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
411 55
|
2月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
185 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
1月前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
194 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
4月前
|
监控 安全 Linux
在 Linux 系统中,网络管理是重要任务。本文介绍了常用的网络命令及其适用场景
在 Linux 系统中,网络管理是重要任务。本文介绍了常用的网络命令及其适用场景,包括 ping(测试连通性)、traceroute(跟踪路由路径)、netstat(显示网络连接信息)、nmap(网络扫描)、ifconfig 和 ip(网络接口配置)。掌握这些命令有助于高效诊断和解决网络问题,保障网络稳定运行。
159 2
|
23天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
84 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
25天前
|
机器学习/深度学习 编解码 测试技术
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 2024轻量化网络MoblieNetV4:移动生态系统的通用模型
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 2024轻量化网络MoblieNetV4:移动生态系统的通用模型
71 4
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 2024轻量化网络MoblieNetV4:移动生态系统的通用模型
|
1月前
|
机器学习/深度学习 编解码 测试技术
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 2024轻量化网络MoblieNetV4:移动生态系统的通用模型
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 2024轻量化网络MoblieNetV4:移动生态系统的通用模型
79 8
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 2024轻量化网络MoblieNetV4:移动生态系统的通用模型
|
8天前
|
搜索推荐 数据挖掘
优质网络舆情监测系统大盘点
一款出色的网络舆情监测系统,不仅能够助力相关主体迅速捕捉舆情信息,有效应对危机,还能够助力其更好地把握舆论动态,维护自身形象。那么,市场上有哪些比较好的网络舆情监测系统呢?这里,本文有为各位整理了一些好用的舆情检测系统,以供各位参考!
22 0
|
2月前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
65 18
|
3月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
233 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别

热门文章

最新文章