牛客小白月赛13 I题

简介: 牛客小白月赛13 I题

链接:https://ac.nowcoder.com/acm/contest/549/I

来源:牛客网


小A也听说了取石子这个游戏,也决定和小B一起来玩这个游戏。总共有n堆石子,双方轮流取石子,每次都可以从任意一堆中取走任意数量的石子,但是不可以不取。规定谁先取完所有的石子就获胜。但是小A实在是太想赢了,所以在游戏开始之前,小A有一次机会,可以趁小B不注意的时候选择其中一堆石子拿走其中的k个,当然小A也可以选择不拿石子。小A先手。双方都会选择最优的策略,请问在这样的情况下小A有没有必胜的策略,如果有输出YES,否则就输出NO。

思路:Nim游戏的模板题
枚举每一堆,判断取走后能否使必胜(维护前缀异或L数组和后缀异或R数组)
判断 L[i - 1] ^ x ^ R[i + 1] != 0(必胜)
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 5;
int a[maxn];
int L[maxn], R[maxn];
int main() {
    int n, k;
    cin >> n >> k;
    int ans = 0;
    for (int i = 1; i <= n; i++) {
        cin >> a[i];
        ans ^= a[i];
    }
    for (int i = 1; i <= n; i++) {
        L[i] = L[i - 1] ^ a[i];
    }
    for (int i = n; i >= 1; i--) {
        R[i] = R[i + 1] ^ a[i];
    }
    if (ans != 0) {
        cout << "YES" << endl;
        return 0;
    }
    for (int i = 1; i <= n; i++) {
        if (a[i] >= k) {
            int x = a[i] - k;
            if ((L[i - 1] ^ R[i + 1] ^ x) != 0) {
                cout << "YES" << endl;
                return 0;
            }
        }
    }
    cout << "NO" << endl;
    return 0;
}
相关文章
|
6月前
|
人工智能 BI
牛客小白月赛66
牛客小白月赛66
38 0
|
机器学习/深度学习 人工智能 算法