Linux内核31-Seqlock

简介: Linux内核31-Seqlock

1 什么是seqlock锁?


上一篇文章中,我们已经学习了读/写自旋锁的工作原理和实现方式(基于ARM架构体系)。但是,有一个问题我们不得不考虑,那就是read锁和write锁的优先级问题:它们具有相同的优先级,所以,读操作必须等到写操作完成后才能执行,同样,写操作必须等到读操作完成后才能执行。

Linux2.6内核版本引入了Seqlock锁,与读写自旋锁基本一样,只是对于写操作来说,具有更高的优先级;也就是说,即使现在读操作正在执行,写操作也会被立即执行。这个策略的优点就是,写操作绝不会等待(除非是有其它写操作在占用锁);缺点就是,读操作可能需要读取多次,才能获取正确的备份。


2 seqlock锁实现


seqlock锁的数据结构如下所示,包含两个数据成员lockseqcount。查看代码可知,seqlock锁就是一个自旋锁加上一个序列计数器。

typedef struct {
    struct seqcount seqcount;       // 序列计数器
    spinlock_t lock;
} seqlock_t;

seqlock锁的工作原理是,对于读操作而言,每次读取数据前后,都要读取序列计数器2次,检查这前后两次的值是否一致,一致则认为可以使用锁。相反,如果一个新的写操作开始工作,增加序列计数器的值,隐含地告知读操作刚刚读到的数据不合法,需要重新读取数据。

seqlock_t类型变量初始化的方法有两种:一种是直接赋值SEQLOCK_UNLOCKED,另外一种是调用seqlock_init宏。写操作分别申请锁和释放锁,分别调用write_seqlock()write_sequnlock()。申请锁的过程是,申请seqlock_t数据结构中的自旋锁,并对序列计数器进行加一操作。释放锁的过程是,再一次对序列计数器进行加一操作,并释放掉自旋锁。这样操作的结果就是,写操作过程中,计数器的计数是奇数;没有写操作的时候,计数器是偶数。


3 seqlock锁使用范例


对于读操作来说,大概的代码实现如下所示:

unsigned int seq;
    do {
        seq = read_seqbegin(&seqlock);
        /* ... 临界代码段 ... */
    } while (read_seqretry(&seqlock, seq));

read_seqbegin()获取锁的当前序列号。read_seqretry()判断序列号是否一致,如果seq的值是奇数,则会返回1,也就是条件为真(也就是说,read_seqbegin()函数被调用之后,有写操作更新了数据)。因此,需要重新读取数据。如果seq的值是偶数,则读取数据成功。

值得注意的是,当读操作进入临界代码段时,无需禁止内核抢占。因为,我们允许写操作打断读操作的执行,这也是Seqlock锁写操作优先级高的设计初衷。但是,写操作进入临界代码段时,会自动禁止内核抢占。


4 seqlock锁使用场合


并不是所有的数据结构都能使用seqlock锁保护。因为seqlock锁有自身的缺点:因为写操作的优先级高于读操作,所以,对于写操作负荷比较的重的场合来说就不合适。如果写操作过于频繁,那么对读操作来说极为不公平,可能需要多次读取数据才能成功。所以,使用seqlock锁的场合应该满足下面的条件:

  • 要保护的数据结构不能包含指针,而且这些指针写操作修改,读操作进行引用。因为可能写操作修改了指针,而读操作还会引用之前的指针。
  • 要保护的数据结构必须是特别短小的代码,而且读操作比较频繁,写操作很少且非常快。(这也是读写自旋锁的使用原则)
  • 读操作的临界代码段中的代码不能有副作用(否则,多次读操作可能与单次读取有不同的效果)。

典型应用可以参考linux内核关于系统时间处理的部分。等分析Linux内核关于系统时间的部分时,再详细阐述。


相关文章
|
3天前
|
算法 Linux 调度
深入理解Linux内核调度器:从基础到优化####
本文旨在通过剖析Linux操作系统的心脏——内核调度器,为读者揭开其高效管理CPU资源的神秘面纱。不同于传统的摘要概述,本文将直接以一段精简代码片段作为引子,展示一个简化版的任务调度逻辑,随后逐步深入,详细探讨Linux内核调度器的工作原理、关键数据结构、调度算法演变以及性能调优策略,旨在为开发者与系统管理员提供一份实用的技术指南。 ####
21 4
|
7天前
|
缓存 算法 Linux
深入理解Linux内核调度器:公平性与性能的平衡####
真知灼见 本文将带你深入了解Linux操作系统的核心组件之一——完全公平调度器(CFS),通过剖析其设计原理、工作机制以及在实际系统中的应用效果,揭示它是如何在众多进程间实现资源分配的公平性与高效性的。不同于传统的摘要概述,本文旨在通过直观且富有洞察力的视角,让读者仿佛亲身体验到CFS在复杂系统环境中游刃有余地进行任务调度的过程。 ####
28 6
|
6天前
|
缓存 资源调度 安全
深入探索Linux操作系统的心脏——内核配置与优化####
本文作为一篇技术性深度解析文章,旨在引领读者踏上一场揭秘Linux内核配置与优化的奇妙之旅。不同于传统的摘要概述,本文将以实战为导向,直接跳入核心内容,探讨如何通过精细调整内核参数来提升系统性能、增强安全性及实现资源高效利用。从基础概念到高级技巧,逐步揭示那些隐藏在命令行背后的强大功能,为系统管理员和高级用户打开一扇通往极致性能与定制化体验的大门。 --- ###
26 9
|
5天前
|
缓存 负载均衡 Linux
深入理解Linux内核调度器
本文探讨了Linux操作系统核心组件之一——内核调度器的工作原理和设计哲学。不同于常规的技术文章,本摘要旨在提供一种全新的视角来审视Linux内核的调度机制,通过分析其对系统性能的影响以及在多核处理器环境下的表现,揭示调度器如何平衡公平性和效率。文章进一步讨论了完全公平调度器(CFS)的设计细节,包括它如何处理不同优先级的任务、如何进行负载均衡以及它是如何适应现代多核架构的挑战。此外,本文还简要概述了Linux调度器的未来发展方向,包括对实时任务支持的改进和对异构计算环境的适应性。
23 6
|
6天前
|
缓存 Linux 开发者
Linux内核中的并发控制机制:深入理解与应用####
【10月更文挑战第21天】 本文旨在为读者提供一个全面的指南,探讨Linux操作系统中用于实现多线程和进程间同步的关键技术——并发控制机制。通过剖析互斥锁、自旋锁、读写锁等核心概念及其在实际场景中的应用,本文将帮助开发者更好地理解和运用这些工具来构建高效且稳定的应用程序。 ####
22 5
|
6天前
|
算法 Unix Linux
深入理解Linux内核调度器:原理与优化
本文探讨了Linux操作系统的心脏——内核调度器(Scheduler)的工作原理,以及如何通过参数调整和代码优化来提高系统性能。不同于常规摘要仅概述内容,本摘要旨在激发读者对Linux内核调度机制深层次运作的兴趣,并简要介绍文章将覆盖的关键话题,如调度算法、实时性增强及节能策略等。
|
7天前
|
存储 监控 安全
Linux内核调优的艺术:从基础到高级###
本文深入探讨了Linux操作系统的心脏——内核的调优方法。文章首先概述了Linux内核的基本结构与工作原理,随后详细阐述了内核调优的重要性及基本原则。通过具体的参数调整示例(如sysctl、/proc/sys目录中的设置),文章展示了如何根据实际应用场景优化系统性能,包括提升CPU利用率、内存管理效率以及I/O性能等关键方面。最后,介绍了一些高级工具和技术,如perf、eBPF和SystemTap,用于更深层次的性能分析和问题定位。本文旨在为系统管理员和高级用户提供实用的内核调优策略,以最大化Linux系统的效率和稳定性。 ###
|
6天前
|
Java Linux Android开发
深入探索Android系统架构:从Linux内核到应用层
本文将带领读者深入了解Android操作系统的复杂架构,从其基于Linux的内核到丰富多彩的应用层。我们将探讨Android的各个关键组件,包括硬件抽象层(HAL)、运行时环境、以及核心库等,揭示它们如何协同工作以支持广泛的设备和应用。通过本文,您将对Android系统的工作原理有一个全面的认识,理解其如何平衡开放性与安全性,以及如何在多样化的设备上提供一致的用户体验。
|
8天前
|
Linux 数据库
Linux内核中的锁机制:保障并发操作的数据一致性####
【10月更文挑战第29天】 在多线程编程中,确保数据一致性和防止竞争条件是至关重要的。本文将深入探讨Linux操作系统中实现的几种关键锁机制,包括自旋锁、互斥锁和读写锁等。通过分析这些锁的设计原理和使用场景,帮助读者理解如何在实际应用中选择合适的锁机制以优化系统性能和稳定性。 ####
25 6
|
9天前
|
机器学习/深度学习 负载均衡 算法
深入探索Linux内核调度机制的优化策略###
本文旨在为读者揭开Linux操作系统中至关重要的一环——CPU调度机制的神秘面纱。通过深入浅出地解析其工作原理,并探讨一系列创新优化策略,本文不仅增强了技术爱好者的理论知识,更为系统管理员和软件开发者提供了实用的性能调优指南,旨在促进系统的高效运行与资源利用最大化。 ###