【Java基础】堆 & 优先级队列(上)

简介: 使用数组保存二叉树结构,方式即将二叉树用层序遍历方式放入数组中。一般只适合表示完全二叉树,这种方式的主要用法就是堆的表示。

目录

1. 二叉树的顺序存储

1.1 存储方式

1.2 下标关系

2. 堆(heap)

2.1 概念

2.2 操作-(下沉&上浮)本例是最大堆

2.3 建堆-完整代码(最大堆)

3. 优先级队列


1. 二叉树的顺序存储

1.1 存储方式

使用数组保存二叉树结构,方式即将二叉树用层序遍历方式放入数组中。

一般只适合表示完全二叉树,这种方式的主要用法就是的表示。

因为非完全二叉树会有空间的浪费(所有非完全二叉树用链式存储)。

image.gif编辑

1.2 下标关系

已知双亲(parent)的下标,则:

左孩子(left)下标 = 2 * parent + 1;

右孩子(right)下标 = 2 * parent + 2;

已知孩子(不区分左右)(child)下标,则:

双亲(parent)下标 = (child - 1) / 2;

2. (heap)

2.1 概念

1. 堆逻辑上是一棵完全二叉树

2. 堆物理上是保存在数组

3. 满足任意结点的值都大于其子树中结点的值,叫做大堆,或者大根堆,或者最大堆

4. 反之,则是小堆,或者小根堆,或者最小堆

5. 堆的基本作用是,快速找集合中的最值

2.2 操作-(下沉&上浮)本例是最大堆

元素下沉:

/**
     * 下沉操作
     */
    public void siftDown(int k){
        //还存在子树
        while (leftChild(k) < data.size()){
            int j = leftChild(k);
            //判断是否存在右子树且大于左子树的值
            if(j+1 < data.size() && data.get(j+1) > data.get(j)){
                j=j+1;
            }
            //此时j为左右子树最大值
            //和当前节点比较大小
            if(data.get(j) <= data.get(k)){
                break;
            }else {
                swap(k,j);
                k=j;
            }
        }
    }

image.gif

元素上浮:

/**
     * 上浮操作
     */
    // 上浮操作的终止条件: 已经走到根节点 || 当前节点值 <= 父节点值
    // 循环的迭代条件 : 还存在父节点并且当前节点值 > 父节点值
    private void siftUp(int k) {
        while (k>0 && data.get(k)>data.get(parent(k))){
            swap(k,parent(k));
            k=parent(k);
        }
    }

image.gif

其中swap方法是交换操作:

//交换三连
    private void swap(int i,int j) {
        int temp = data.get(j);
        data.set(j,data.get(i));
        data.set(i,temp);
    }

image.gif

堆化数组:

/**
     * 将任意数组堆化
     * @param arr
     */
    public MaxHeap(int[] arr){
        data = new ArrayList<>(arr.length);
        // 1.先将arr的所有元素复制到data数组中
        for(int i : arr){
            data.add(i);
        }
        // 2.从最后一个非叶子结点开始进行siftDown
        for (int i = parent(data.size()-1); i >=0 ; i--) {
            siftDown(i);
        }
    }

image.gif

图示:

以此数组为例:

// 调整前
int[] array = { 27,15,19,18,28,34,65,49,25,37 };
// 调整后
int[] array = { 15,18,19,25,28,34,65,49,27,37 };

image.gif

image.gif编辑

时间复杂度分析:

最坏的情况即图示的情况,从根一路比较到叶子,比较的次数为完全二叉树的高度

即时间复杂度为O(log(n))

2.3 建堆-完整代码(最大堆)

/**
 * 基于整形最大堆实现
 * 时根节点从0开始编号,若此时节点编号为k
 * 左孩子为2k+1
 * 右孩子为2k+2
 * 父节点为(k-1)/2
 */
import java.util.ArrayList;
import java.util.List;
import java.util.NoSuchElementException;
public class MaxHeap {
    // 使用JDK的动态数组(ArrayList)来存储一个最大堆
    List<Integer> data;
    // 构造方法的this调用
    public MaxHeap(){
        this(10);
    }
    // 初始化的堆大小
    public MaxHeap(int size){
        data = new ArrayList<>(size);
    }
    /**
     * 将任意数组堆化
     * @param arr
     */
    public MaxHeap(int[] arr){
        data = new ArrayList<>(arr.length);
        // 1.先将arr的所有元素复制到data数组中
        for(int i : arr){
            data.add(i);
        }
        // 2.从最后一个非叶子结点开始进行siftDown
        for (int i = parent(data.size()-1); i >=0 ; i--) {
            siftDown(i);
        }
    }
    /**
     * 向最大堆中增加值为Value的元素
     * @param value
     */
    public void add(int value){
        //1.先直接加到堆的末尾
        data.add(value);
        //2.元素上浮操作
        siftUp(data.size()-1);
    }
    /**
     * 只找到堆顶元素值
     * @return
     */
    public int peekMax (){
        if(isEmpty()){
            throw new NoSuchElementException("heap is empty!connot peek");
        }
        return data.get(0);
    }
    /**
     * 取出当前最大堆的最大值
     */
    public int extractMax(){
        // 取值一定注意判空
        if(isEmpty()){
            throw new NoSuchElementException("heap is empty!connot extract");
        }
        int max = data.get(0);
        // 1.将数组末尾元素顶到堆顶
        int lastValue =data.get(data.size()-1);
        data.set(0,lastValue);
        // 2.将数组末尾的元素删除
        data.remove(data.size()-1);
        // 3.进行元素的下沉操作
        siftDown(0);
        return max;
    }
    /**
     * 下沉操作
     */
    public void siftDown(int k){
        //还存在子树
        while (leftChild(k) < data.size()){
            int j = leftChild(k);
            //判断是否存在右子树且大于左子树的值
            if(j+1 < data.size() && data.get(j+1) > data.get(j)){
                j=j+1;
            }
            //此时j为左右子树最大值
            //和当前节点比较大小
            if(data.get(j) <= data.get(k)){
                break;
            }else {
                swap(k,j);
                k=j;
            }
        }
    }
    /**
     * 上浮操作
     */
    // 上浮操作的终止条件: 已经走到根节点 || 当前节点值 <= 父节点值
    // 循环的迭代条件 : 还存在父节点并且当前节点值 > 父节点值
    private void siftUp(int k) {
        while (k>0 && data.get(k)>data.get(parent(k))){
            swap(k,parent(k));
            k=parent(k);
        }
    }
    //交换三连
    private void swap(int i,int j) {
        int temp = data.get(j);
        data.set(j,data.get(i));
        data.set(i,temp);
    }
    //判读堆为空
    public boolean isEmpty(){
        return data.size() == 0;
    }
    //根据索引找父节点
    public int parent(int k){
        return (k-1)>>1;
    }
    //根据索引找左孩子
    public int leftChild(int k){
        return k<<2+1;
    }
    //根据索引找右孩子
    public int rightChild(int k){
        return k<<2+2;
    }
    @Override
    public String toString() {
        return data.toString();
    }
}

image.gif

ps:随机数操作

int[] data=new int[10000];
        //随机数
        ThreadLocalRandom random = ThreadLocalRandom.current();
        for (int i = 0; i < data.length; i++) {
            data[i] = random.nextInt();
        }

image.gif

3. 优先级队列

详见下节:《Java 堆 & 优先级队列(下)》

相关文章
|
3月前
|
存储 算法 Java
惊!Java程序员必看:JVM调优揭秘,堆溢出、栈溢出如何巧妙化解?
【8月更文挑战第29天】在Java领域,JVM是代码运行的基础,但需适当调优以发挥最佳性能。本文探讨了JVM中常见的堆溢出和栈溢出问题及其解决方法。堆溢出发生在堆空间不足时,可通过增加堆空间、优化代码及释放对象解决;栈溢出则因递归调用过深或线程过多引起,调整栈大小、优化算法和使用线程池可有效应对。通过合理配置和调优JVM,可确保Java应用稳定高效运行。
140 4
|
20天前
|
安全 Java 编译器
Java对象一定分配在堆上吗?
本文探讨了Java对象的内存分配问题,重点介绍了JVM的逃逸分析技术及其优化策略。逃逸分析能判断对象是否会在作用域外被访问,从而决定对象是否需要分配到堆上。文章详细讲解了栈上分配、标量替换和同步消除三种优化策略,并通过示例代码说明了这些技术的应用场景。
Java对象一定分配在堆上吗?
|
1月前
|
存储 算法 Java
🏗️Java零基础:深入了解Java 堆
【10月更文挑战第2天】本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,希望能够助你一臂之力,帮你早日登顶实现财富自由🚀;同时,欢迎大家关注&&收藏&&订阅!持续更新中,up!up!up!!
21 3
|
1月前
|
Java Linux 调度
Java线程的优先级详解
Java线程的优先级机制允许开发者根据程序需求为线程设定不同优先级,范围通常在1到10之间,默认优先级为5。高优先级线程在执行时通常会得到更多的CPU时间,但这并不意味着低优先级线程会被完全忽略。系统资源分配仍然取决于具体的调度策略。理解线程优先级有助于优化多线程应用的性能。
|
1月前
|
存储 安全 Java
【用Java学习数据结构系列】探索栈和队列的无尽秘密
【用Java学习数据结构系列】探索栈和队列的无尽秘密
30 2
|
2月前
|
Java API 容器
JAVA并发编程系列(10)Condition条件队列-并发协作者
本文通过一线大厂面试真题,模拟消费者-生产者的场景,通过简洁的代码演示,帮助读者快速理解并复用。文章还详细解释了Condition与Object.wait()、notify()的区别,并探讨了Condition的核心原理及其实现机制。
|
2月前
|
JSON 前端开发 JavaScript
java中post请求调用下载文件接口浏览器未弹窗而是返回一堆json,为啥
客户端调接口需要返回另存为弹窗,下载文件,但是遇到的问题是接口调用成功且不报错,浏览器F12查看居然返回一堆json,而没有另存为弹窗; > 正确的效果应该是:接口调用成功且浏览器F12不返回任何json,而是弹窗另存为窗口,直接保存文件即可。
142 2
|
1月前
|
存储 算法 Java
【用Java学习数据结构系列】用堆实现优先级队列
【用Java学习数据结构系列】用堆实现优先级队列
31 0
|
3月前
|
存储 消息中间件 监控
Java日志详解:日志级别,优先级、配置文件、常见日志管理系统ELK、日志收集分析
Java日志详解:日志级别,优先级、配置文件、常见日志管理系统、日志收集分析。日志级别从小到大的关系(优先级从低到高): ALL < TRACE < DEBUG < INFO < WARN < ERROR < FATAL < OFF 低级别的会输出高级别的信息,高级别的不会输出低级别的信息
|
3月前
|
存储 Java 程序员
Java 中的堆栈和堆有什么区别?
【8月更文挑战第22天】
199 0