【SICP练习】40 练习1.45

简介:


练习1.45

如果看到前面的文章,应该知道我喜欢将某个变量n先设成一个固定的数比如34什么的。这里我们依旧如此,先来看看如何写出开四次方根的过程。这道题的目的旨在让我们好好回顾前面的内容,毕竟只剩下一道题我们就完完全全的解决了第一章。

下面我来带大家一起回顾一下。fixed-point是以1个函数和一个初始猜测为参数的函数,用来计算不动点。所谓的不动点就是x=f(x)时的点x。比如这个式子,(fixed-point square 1.0),它会返回1,因为1的平方等于1

average-damp是一个参数是一个过程f,返回的还是一个过程的函数,其主要是体现了平均阻尼的技术。

repeated在前面几题中有大量的介绍,不记得的话可以回过头看看。其以一个过程和一个数字为参数,数字为这个过程的重复执行次数。并且它也将返回一个过程。

下面我们就用这些技术来完成开4次方的函数,英文太烂请见谅。所需要的函数都应该先加载。

(define (4-root x)

    (fixed-point (repeated (average-damp

 (lambda (y)

     (/ x (* y y y)))) 10) 1.0))

现在我们可以来测试一下。

(4-root 16)

;Value: 1.9900313055671766

看来效果还是不错的。

下面我们来将开四次方写成一个过程。进展很顺利,一气呵成。

(define 4-root

   (lambda (x times)

      (fixed-point (repeated (average-damp

                              (lambda (y)

                                (/ x (* y yy)))) times) 1.0)))

在我看来比较棘手的是这里的多个y的相乘,因为前面我在嵌套过程的时候真是走了太多弯路。

这里我先将这个过程写出来,如果不太会的话可以先将函数写出来,因为函数和lambda表达式是可以互相转换的。

(define multi-self

(lambda (n times)

    (if (= times 1)

       n

       (* n (multi-self n (- times 1))))))

有了以上这些积累就可以完成下面这个过程了。

(define n-root

    (lambda (n x times)

        (fixed-point (repeated (average-damp

                                (lambda (y)

                                   (/ x (multi-self y (- n 1)))))times) 1.0)))

我在一开始测试4次方的时候Edwin一直没有反应而且风扇呼呼的转,知道我将times弄得大点,原来是平均阻尼不足以让不动点搜寻收敛。

目录
相关文章
|
Go
【SICP练习】146 练习4.2
版权声明:转载请联系本人,感谢配合!本站地址:http://blog.csdn.net/nomasp https://blog.csdn.net/NoMasp/article/details/44729521 练习4-2 原文 Exercise 4.
676 0
|
机器学习/深度学习 算法