sklearn.preprocessing.PolynomialFeatures多项式特征

简介: sklearn.preprocessing.PolynomialFeatures多项式特征

生成多项式和交互特征。

生成一个新的特征矩阵,该矩阵由度小于或等于指定度的特征的所有多项式组合组成。例如,如果输入样本是二维且格式为[a,b],则2阶多项式特征为[1,a,b,a ^ 2,ab,b ^ 2]。

参量 属性
度int,默认= 2多项式特征的程度。interact_only bool,默认为False如果为真,只有相互作用特征产生:是至多产品特征degree 不同输入特征(因此不是 ,等)。x[1] ** 2x[0] * x[2] ** 3include_bias bool,默认为True如果为True(默认值),则包括一个偏差列,该特征中所有多项式的幂均为零(即,一列的幂-在线性模型中充当拦截项)。顺序{‘C’,‘F’},默认='C’在密集情况下输出数组的顺序。“ F”阶的计算速度更快,但可能会减慢后续的估计量。0.21版中的新功能。 形状的powers_ ndarray(n_output_features,n_input_features)powers_ [i,j]是第i个输出中第j个输入的指数。n_input_features_ int输入功能的总数。n_output_features_ int多项式输出特征的总数。通过迭代所有适当大小的输入要素组合来计算输出要素的数量。

例子

>>> import numpy as np
>>> from sklearn.preprocessing import PolynomialFeatures
>>> X = np.arange(6).reshape(3, 2)
>>> X
array([[0, 1],
       [2, 3],
       [4, 5]])
>>> poly = PolynomialFeatures(2)
>>> poly.fit_transform(X)
array([[ 1.,  0.,  1.,  0.,  0.,  1.],
       [ 1.,  2.,  3.,  4.,  6.,  9.],
       [ 1.,  4.,  5., 16., 20., 25.]])
>>> poly = PolynomialFeatures(interaction_only=True)
>>> poly.fit_transform(X)
array([[ 1.,  0.,  1.,  0.],
       [ 1.,  2.,  3.,  6.],
       [ 1.,  4.,  5., 20.]])

fit(X [,y])

计算输出要素的数量。

fit_transform(X [,y])

适合数据,然后对其进行转换。

get_feature_names([input_features])

返回输出要素的要素名称

get_params([深])

获取此估计量的参数。

set_params(**参数)

设置此估算器的参数。

transform(X)

将数据转换为多项式特征


目录
相关文章
|
8月前
|
机器学习/深度学习 存储 算法
sklearn应用线性回归算法
sklearn应用线性回归算法
97 0
|
8月前
|
机器学习/深度学习 算法 数据挖掘
sklearn-决策树
sklearn-决策树
79 0
|
8月前
Sklearn库中的决策树模型有哪些主要参数?
Sklearn的决策树模型参数包括:criterion(默认"gini")用于特征选择,splitter(默认"best")决定划分点,max_depth限制树的最大深度,min_samples_split设置内部节点划分的最小样本数,min_samples_leaf定义叶子节点最少样本数,max_features(默认"auto")控制搜索最优划分时的特征数量,random_state设定随机数种子,max_leaf_nodes限制最大叶子节点数,以及min_impurity_decrease阻止不纯度减少不足的节点划分。
98 0
|
8月前
|
算法
sklearn算法
sklearn算法
53 0
|
机器学习/深度学习 算法 计算机视觉
使用sklearn进行特征选择
背景 一个典型的机器学习任务,是通过样本的特征来预测样本所对应的值。如果样本的特征少,我们会考虑增加特征。而现实中的情况往往是特征太多了,需要减少一些特征。
|
8月前
|
机器学习/深度学习
数据分享|R语言逻辑回归、线性判别分析LDA、GAM、MARS、KNN、QDA、决策树、随机森林、SVM分类葡萄酒交叉验证ROC(下)
数据分享|R语言逻辑回归、线性判别分析LDA、GAM、MARS、KNN、QDA、决策树、随机森林、SVM分类葡萄酒交叉验证ROC
|
7月前
|
机器学习/深度学习 数据可视化
Sklearn中逻辑回归建模
分类模型评估通常涉及准确率、召回率和F1值。准确率是正确分类样本的比例,但在类别不平衡时可能误导,例如一个模型总是预测多数类,即使误分类少数类也能有高准确率。召回率关注的是真正类被正确识别的比例,而精确率则衡量预测为正类的样本中真正为正类的比例。F1值是精确率和召回率的调和平均数,提供了两者之间的平衡。在sklearn中,可以使用`recall_score`, `precision_score` 和 `f1_score` 函数来计算这些指标。在类别重要性不同时,需根据业务需求选择合适的评估标准。
|
8月前
|
机器学习/深度学习 数据可视化 计算机视觉
数据分享|R语言逻辑回归、线性判别分析LDA、GAM、MARS、KNN、QDA、决策树、随机森林、SVM分类葡萄酒交叉验证ROC(上)
数据分享|R语言逻辑回归、线性判别分析LDA、GAM、MARS、KNN、QDA、决策树、随机森林、SVM分类葡萄酒交叉验证ROC
|
8月前
R语言stan泊松回归Poisson regression
R语言stan泊松回归Poisson regression
一、线性回归的两种实现方式:(二)sklearn实现
一、线性回归的两种实现方式:(二)sklearn实现