生成多项式和交互特征。
生成一个新的特征矩阵,该矩阵由度小于或等于指定度的特征的所有多项式组合组成。例如,如果输入样本是二维且格式为[a,b],则2阶多项式特征为[1,a,b,a ^ 2,ab,b ^ 2]。
参量 | 属性 |
度int,默认= 2多项式特征的程度。interact_only bool,默认为False如果为真,只有相互作用特征产生:是至多产品特征degree 不同输入特征(因此不是 ,等)。x[1] ** 2x[0] * x[2] ** 3include_bias bool,默认为True如果为True(默认值),则包括一个偏差列,该特征中所有多项式的幂均为零(即,一列的幂-在线性模型中充当拦截项)。顺序{‘C’,‘F’},默认='C’在密集情况下输出数组的顺序。“ F”阶的计算速度更快,但可能会减慢后续的估计量。0.21版中的新功能。 | 形状的powers_ ndarray(n_output_features,n_input_features)powers_ [i,j]是第i个输出中第j个输入的指数。n_input_features_ int输入功能的总数。n_output_features_ int多项式输出特征的总数。通过迭代所有适当大小的输入要素组合来计算输出要素的数量。 |
例子
>>> import numpy as np >>> from sklearn.preprocessing import PolynomialFeatures >>> X = np.arange(6).reshape(3, 2) >>> X array([[0, 1], [2, 3], [4, 5]]) >>> poly = PolynomialFeatures(2) >>> poly.fit_transform(X) array([[ 1., 0., 1., 0., 0., 1.], [ 1., 2., 3., 4., 6., 9.], [ 1., 4., 5., 16., 20., 25.]]) >>> poly = PolynomialFeatures(interaction_only=True) >>> poly.fit_transform(X) array([[ 1., 0., 1., 0.], [ 1., 2., 3., 6.], [ 1., 4., 5., 20.]])
fit(X [,y])
计算输出要素的数量。
fit_transform(X [,y])
适合数据,然后对其进行转换。
get_feature_names([input_features])
返回输出要素的要素名称
get_params([深])
获取此估计量的参数。
set_params(**参数)
设置此估算器的参数。
transform(X)
将数据转换为多项式特征