linux网络实现分析(2)——数据包的接收(从链路层到ip层)

简介:

linux网络实现分析(2)——数据包的接收(从链路层到ip层)

——lvyilong316

任何数据包在由驱动接收进入协议栈都会经过netif_receive_skb函数,可以说这个函数是协议栈的入口。在分析这个函数前,首先介绍下三层协议在内核中的组织方式。

    在Linux内核中,有两种不同目的的3层协议:

(1) ptype_all管理的协议主要用于分析目的,它接收所有到达第3层协议的数据包。

(2) ptype_base管理正常的3层协议,仅接收具有正确协议标志符的数据包,例如,Internet的0x0800。

    它们的组织关系如下图:



下面开始分析netif_receive_skb函数。


netif_receive_skb


int netif_receive_skb(struct sk_buff *skb)

{

    struct packet_type *ptype, *pt_prev;

    struct net_device *orig_dev;

    struct net_device *null_or_orig;

    int ret = NET_RX_DROP;

    __be16 type;

 

    if (skb->vlan_tci && vlan_hwaccel_do_receive(skb)) //vlan tag,则vlan处理

        return NET_RX_SUCCESS;

 

    null_or_orig = NULL;

    orig_dev = skb->dev;   //接受数据包的原始设备

    if (orig_dev->master) {

        if (skb_bond_should_drop(skb))

            null_or_orig = orig_dev; /* deliver only exact match */

        else

            skb->dev = orig_dev->master;

    }

    pt_prev = NULL;

rcu_read_lock();

    //AF_PACKETETH_P_ALL网络协议会被放在ptype_all链表中(tcpdump)

list_for_each_entry_rcu(ptype, &ptype_all, list) { 

    if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||

       ptype->dev == orig_dev) {

        if (pt_prev)

            ret = deliver_skb(skb, pt_prev, orig_dev);

        pt_prev = ptype;

    }

 }

 

    skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);//bridge逻辑处理

    if (!skb)

        goto out;

 

    type = skb->protocol; //获取协议类型

    //根据协议类型在hashptype_base中找到相关的注册协议(IPARP)

    list_for_each_entry_rcu(ptype,

            &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {

        if (ptype->type == type &&

            (ptype->dev == null_or_orig || ptype->dev == skb->dev ||

             ptype->dev == orig_dev)) {

            if (pt_prev)

                ret = deliver_skb(skb, pt_prev, orig_dev);//调用协议处理函数

            pt_prev = ptype;

        }

    }

    if (pt_prev) {

        ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);//???

    } else {

        kfree_skb(skb);

        /* Jamal, now you will not able to escape explaining

         * me how you were going to use this. :-)

         */

        ret = NET_RX_DROP;

    }

 

out:

    rcu_read_unlock();

    return ret;

}



deliver_skb

    int deliver_skb(struct sk_buff *skb,struct packet_type *pt_prev, struct net_device *orig_dev){

atomic_inc(&skb->users); //这句不容忽视,与后面流程的kfree_skb()相呼

return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);//调函数ip_rcv() arp_rcv()

}

 

如果是IP数据包,则调用ip_rcv()函数,这是因为ip协议再引导时间初始化协议处理函数为ip_rcv(),具体如下:

net/ipv4/af_inet.c,

static struct packet_type ip_packet_type __read_mostly = {

    .type = cpu_to_be16(ETH_P_IP),

    .func = ip_rcv,

    .gso_send_check = inet_gso_send_check,

    .gso_segment = inet_gso_segment,

    .gro_receive = inet_gro_receive,

    .gro_complete = inet_gro_complete,

};

static int __init inet_init(void){

    …

    dev_add_pack(&ip_packet_type);

    …

}

 

下面来看ip_rcv()函数:


ip_rcv()

net/ipv4/ip_input.c

/*

参数说明:

@dev:即skb->dev,但并不一定是最开始接收skbdev,如经过bridge逻辑又发回本机协议栈时,此时dev即为刚经过的bridge对应的虚拟dev,具体见bridge逻辑。

@pt: 指向协议的指针,这里即ip_packet_type

@orig_dev: 这是最开始接收数据包的设备dev,再netif_receive_skb中被设置。

*/

int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev)

{

    struct iphdr *iph;

    u32 len;

    //如果skbshare的(skb->users不为1),则clone一个skb_buffskb指向这个新的skb->users1skb_buff

    if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL) {

        IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INDISCARDS);

        goto out;

    }

    //进入ip_rcv之前,skb->date已经指向链路头后面,链路头已被解析。

    if (!pskb_may_pull(skb, sizeof(struct iphdr)))

        goto inhdr_error;

 

    iph = ip_hdr(skb);

 

    if (iph->ihl < 5 || iph->version != 4) //丢掉ip头长小于4*5=20的,或者ip version不为4的包(头部长度是以4字节为单位的)

        goto inhdr_error;

 

    if (!pskb_may_pull(skb, iph->ihl*4))

        goto inhdr_error;

    iph = ip_hdr(skb);    

 

    if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))//丢弃校验和(仅头部)错误的包

        goto inhdr_error;

 

    len = ntohs(iph->tot_len); //len为数据包的真实长度

  

   //由于链路层传输时,由于对齐或最小mtu等原因,可能会对数据包填充,所以这里要将数据包截断为其真实长度(len),len包括线性和非线性数据两部分。另外pskb_trim_rcsum会让L4校验和失效,以免接受的NIC计算过此值,但是计算的不正确。

    if (pskb_trim_rcsum(skb, len)) {

        IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INDISCARDS);

        goto drop;

    }

    skb_orphan(skb);//使包成为不属于任何套接字的孤包(skb->sk = NULL)

    //IP PRE_ROUTING

    return NF_HOOK(PF_INET, NF_INET_PRE_ROUTING, skb, dev, NULL,

               ip_rcv_finish);

 

inhdr_error:

    IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INHDRERRORS);

drop:

    kfree_skb(skb);

out:

    return NET_RX_DROP;

}

 

在经过IP协议的PRE_ROUTING hook点后,将调用ip_rcv_finish函数。


  ip_rcv_finish

net/ipv4/ip_input.c,

static int ip_rcv_finish(struct sk_buff *skb)

{

    const struct iphdr *iph = ip_hdr(skb);

    struct rtable *rt;

 

   // skb->_skb_dst 指向dst_entry

    if (skb_dst(skb) == NULL) {//如果 skb->_skb_dst为空

        int err = ip_route_input(skb, iph->daddr, iph->saddr, iph->tos,

skb->dev);  //查找路由表

        …

        }

    }

  //ip头部超过20字节时,表示有一些选项要处理,此时skb_cow(命名来自于copy on write)会被调用,如果skb和别人有share,就拷贝一个副本,因为处理选项有可能修改ip头。同时处理选项

    if (iph->ihl > 5 && ip_rcv_options(skb))

        goto drop;

 

    rt = skb_rtable(skb);

    if (rt->rt_type == RTN_MULTICAST) {  //多播

        IP_UPD_PO_STATS_BH(dev_net(rt->u.dst.dev), IPSTATS_MIB_INMCAST,

                skb->len);

    } else if (rt->rt_type == RTN_BROADCAST)  //广播

        IP_UPD_PO_STATS_BH(dev_net(rt->u.dst.dev), IPSTATS_MIB_INBCAST,

                skb->len);

 

    return dst_input(skb);

 

drop:

    kfree_skb(skb);

    return NET_RX_DROP;

}

 

  dst_input

static inline int dst_input(struct sk_buff *skb)

{

    return skb_dst(skb)->input(skb);

}

即调用skb->_skb_dst->input(skb),skb->_skb_dst在ip_route_input中被初始化为ip_local_deliver或ip_forward,这取决于封包的目的地址。

目录
相关文章
|
26天前
|
Ubuntu Linux
Linux系统管理:服务器时间与网络时间同步技巧。
以上就是在Linux服务器上设置时间同步的方式。然而,要正确运用这些知识,需要理解其背后的工作原理:服务器根据网络中的其他机器的时间进行校对,逐步地精确自己的系统时间,就像一只犹豫不决的啮齿动物,通过观察其他啮齿动物的行为,逐渐确定自己的行为逻辑,既简单,又有趣。最后希望这个过程既能给你带来乐趣,也能提高你作为系统管理员的专业素养。
107 20
|
27天前
|
监控 Linux
Linux基础:文件和目录类命令分析。
总的来说,这些基础命令,像是Linux中藏匿的小矮人,每一次我们使用他们,他们就把我们的指令准确的传递给Linux,让我们的指令变为现实。所以,现在就开始你的Linux之旅,挥动你的命令之剑,探索这个充满神秘而又奇妙的世界吧!
70 19
|
1月前
|
JSON 运维 Ubuntu
Linux下如何使用Curl进行网络请求
希望这篇文章能帮助您在Linux下更好地使用Curl进行网络请求。如有疑问,请随时提问!
99 10
|
2月前
|
缓存 网络协议 Linux
PCIe 以太网芯片 RTL8125B 的 spec 和 Linux driver 分析备忘
本文详细介绍了 Realtek RTL8125B PCIe 以太网芯片的规格以及在 Linux 中的驱动安装和配置方法。通过深入分析驱动源码,可以更好地理解其工作原理和优化方法。在实际应用中,合理配置和优化驱动程序可以显著提升网络性能和稳定性。希望本文能帮助您更好地使用和管理 RTL8125B,以满足各种网络应用需求。
200 33
|
2月前
|
数据管理 Linux iOS开发
Splunk Enterprise 9.4.1 (macOS, Linux, Windows) 发布 - 机器数据管理和分析
Splunk Enterprise 9.4.1 (macOS, Linux, Windows) 发布 - 机器数据管理和分析
39 0
Splunk Enterprise 9.4.1 (macOS, Linux, Windows) 发布 - 机器数据管理和分析
|
3月前
|
Linux 网络性能优化 网络安全
Linux(openwrt)下iptables+tc工具实现网络流量限速控制(QoS)
通过以上步骤,您可以在Linux(OpenWrt)系统中使用iptables和tc工具实现网络流量限速控制(QoS)。这种方法灵活且功能强大,可以帮助管理员有效管理网络带宽,确保关键业务的网络性能。希望本文能够为您提供有价值的参考。
375 28
|
3月前
|
网络协议 Unix Linux
深入解析:Linux网络配置工具ifconfig与ip命令的全面对比
虽然 `ifconfig`作为一个经典的网络配置工具,简单易用,但其功能已经不能满足现代网络配置的需求。相比之下,`ip`命令不仅功能全面,而且提供了一致且简洁的语法,适用于各种网络配置场景。因此,在实际使用中,推荐逐步过渡到 `ip`命令,以更好地适应现代网络管理需求。
103 11
|
4月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
116 17
|
4月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
88 10