Go语言核心知识channel

简介: Go语言核心知识channel

到这里你正在接触最核心和重要的知识!认真学习的你很棒!

本节源码位置 https://github.com/golang-minibear2333/golang/blob/master/4.concurrent/channel.go


什么是 channel


Go 是一门从语言级别就支持并发的编程语言, 它有一个设计哲学很特别 不要通过共享内存来通信,而应通过通信来共享内存 ,听起来是有一点绕。

在传统语言中并发使用全局变量来进行不同线程之间的数据共享,这种方式就是使用共享内存的方式进行通信。而 Go 会在协程和协程之间打一个隧道,通过这个隧道来传输数据(发送和接收)。

de53aa37a63c097b05c132f595f1038c.png


打个比方,我们平时肯定没少接触过队列,队列的特点是先进先出,多方生产插入,多方消费接收。这个队列/隧道就是channel。


channel 是 goroutine 之间互相通讯的东西,goroutine 之间用来发消息和接收消息。其实,就是在做 goroutine 之间的内存共享。


我们来看看具体是什么使用的。


声明与初始化


channel是类型相关的,也就是说一个 channel 只能传递一种类型的值,这个类型需要在 channel 声明时指定。


channel 的一般声明形式:


var chanName chan 类型


与普通变量的声明不同的是在类型前面加了 channel 关键字,类型 则指定了这个 channel 所能传递的元素类型。示例:


var a chan int //声明一个传递元素类型为int的channel
var b chan float64
var c chan strin


通道是一个引用类型,初始值为nil,对于值为nil的通道,不论具体是什么类型,它们所属的接收和发送操作都会永久处于阻塞状态。

所以必须手动make初始化,示例:

a := make(chan int) //初始化一个int型的名为a的channel
b := make(chan float64)
c := make(chan string)


既然是队列,那就有大小,上面没声明具体的大小,被认为是无缓冲的(注意大小是 0,不是 1)也就是说必须有其他goroutine接收,不然就会阻塞在那。声明有缓冲的,指定大小就可以了。


a := make(chan int,100)

如何使用


我们进一步体验一下无缓冲 channel 会发生什么问题,同时熟悉下用法,示例:

func pendingForever() {
a := make(chan int)
a <- 1   //将数据写入channel
z := <-a //从channel中读取数据
fmt.Println(z)
}

观察上面三行代码,第 2 行往 channel 内写入了数据,第 3 行从 channel 中读取了数据

但是这是在同一个方法中,并且没有使用 Go 关键字,说明他们在同一个协程


我们说过 channel 是用来给不同 goroutine 通信的,所以是不能在同一个协程又发送又接收,这根本就达不到隧道通信的效果。所以上面的代码,会死锁:

fatal error: all goroutines are asleep - deadlock!
goroutine 1 [chan send]:
main.main()
.../4.concurrent/channel.go:7 +0x59

死锁的原因是没有其他协程来接收数据,隧道因为是无缓冲的,所以直接永远的阻塞在发送方。

要解决这个问题也好办。放到不同 goroutine 里就可以。


func normal() {
chanInt := make(chan int)
go func() {
chanInt <- 1
}()
res := <-chanInt
fmt.Println(res)
}


输出1。无缓冲通道在无数据发送时,接收端会阻塞,直到有新数据发送过来为止。

上面的代码,一个发送一个接收,而实际使用中数据往往是连续不断发送的。来看一段代码:

func standard() {
chanInt := make(chan int)
go func() {
defer close(chanInt)
var produceData = []int{1, 2, 3}
for _, v := range produceData {
chanInt <- v
}
}()
for v := range chanInt {
fmt.Println(v)
}
}

输出

1
2
3


循环传递数据,父协程循环接收。

range chan 的方式可以不断的接收数据,直到通道关闭,假如通道不关闭会永远阻塞,无法通过编译,直接报死锁。

必须在发送端关闭通道,因为接收端无法预料是否还有数据没有接收完;向已关闭的channel发送数据会panic。

建议使用 defer 来关闭通道,防止程序异常时未正常关闭。


至此我们完成了一个简单的生产者消费者模型。


channel 的关闭


使用 Go 语言内置的 close() 函数即可关闭 channel,再强调一次建议使用defer关闭,示例:

defer close(ch)


关闭了 channel 后如何查看 channel 是否关闭成功了呢?很简单,我们可以在读取 channel 时采用多重返回值的方式,示例:

x, ok := <-ch


通过查看第二个返回值的 bool 值即可判断 channel 是否关闭,若为 false 则表示 channel 被关闭,反之则没有关闭(使用频率不高,了解即可)

func main() {
var chanInt chan int = make(chan int, 10)
go func() {
defer fmt.Println("chanInt is closed")
defer close(chanInt)
chanInt <- 1
}()
res := <-chanInt
fmt.Println(res)
}

输出


chanInt is closed
1



如上声明了一个有缓冲的通道,在缓冲大小允许的范围内不需要阻塞等待接收

发送端发送完毕后主动关闭通道

虽然通道已经关闭,接收端依然可以接收,接收完自行结束。

PS1: 同一个通道只能关闭一次,重复关闭会panic。


PS2: 如果传入nil,如 close(nil) 会 panic。


多发送、多接收与单向通道


我们结合前面知识,来实战练习一下!

功能:实现一个多发送,多接收的例子。

func send(c chan<- int, wg *sync.WaitGroup) {
c <- rand.Int()
wg.Done()
}
  • 发送端随机生成数字,并声明一个仅发送的单向通道
  • 使用sync.WaitGroup做等待(忘记的回顾上一节哈!)
func received(c <-chan int, wg *sync.WaitGroup) {
  for gotData := range c {
    fmt.Println(gotData)
  }
  wg.Done()
}
  • 接收端使用range来接收数字并打印


func main() {
  chanInt := make(chan int, 10)
  done := make(chan struct{})
    defer close(done)
  go func() {
    defer close(chanInt)
        // 发送
  }()
  go func() {
    ...
    // 接收
    done <- struct{}{}
  }()
  <-done
}


  • 使用了两个通道,一个通道chanInt进行数据传输,另一个done控制完毕时结束主协程
  • 发送端负责生产数据,生产完毕后关闭通道
  • 接收端负责接收完毕后通知主协程


发送端

go func() {
    var wg sync.WaitGroup
    defer close(chanInt)
    for i := 0; i < 5; i++ {
        wg.Add(1)
        go send(chanInt, &wg)
    }
    wg.Wait()
}()

连续启动 5 个协程,使用wg做协程等待,发送完毕再结束是为了交给defer关闭chanInt

接收端

go func() {
    var wg sync.WaitGroup
    for i := 0; i < 8; i++ {
        wg.Add(1)
        go received(chanInt, &wg)
    }
    wg.Wait()
    done <- struct{}{}
}()

连续启动多个接收端,通道被关闭时纷纷退出,最后通知done

输出 5 个随机数,程序正常关闭。

5577006791947779410
8674665223082153551
4037200794235010051
6129484611666145821
3916589616287113937


单向通道限制了函数的使用方式,它可以用在循环比较耗时的场景,处理完一个数据立马发送出来,尽量减少内存的使用。


小结


这一节简单介绍了 go 语言中的 channel(信道),go 语言主张不要通过共享内存来通信,而应通过通信来共享内存,通过channel的方式可以完成不同goroutine之间的通信。


我们学会了:


channel 是引用类型默认值是nil,需要手动make。

通道必须在多个goroutine中使用

有缓冲与无缓冲通道的特点,什么时候会阻塞。

可以用range来做循环接收,通道关闭会自动停止。

只能且必须在发送端使用defer关闭通道。

正式使用一般多发送多接收,并使用done信号通知的方式进行通知。

在工作中,通道的使用更为复杂,下一节将介绍select,敬请期待

相关文章
|
5天前
|
存储 JSON 监控
Viper,一个Go语言配置管理神器!
Viper 是一个功能强大的 Go 语言配置管理库,支持从多种来源读取配置,包括文件、环境变量、远程配置中心等。本文详细介绍了 Viper 的核心特性和使用方法,包括从本地 YAML 文件和 Consul 远程配置中心读取配置的示例。Viper 的多来源配置、动态配置和轻松集成特性使其成为管理复杂应用配置的理想选择。
23 2
|
9天前
|
JavaScript Java Go
探索Go语言在微服务架构中的优势
在微服务架构的浪潮中,Go语言以其简洁、高效和并发处理能力脱颖而出。本文将深入探讨Go语言在构建微服务时的性能优势,包括其在内存管理、网络编程、并发模型以及工具链支持方面的特点。通过对比其他流行语言,我们将揭示Go语言如何成为微服务架构中的一股清流。
|
3天前
|
Go 索引
go语言中的循环语句
【11月更文挑战第4天】
11 2
|
3天前
|
Go C++
go语言中的条件语句
【11月更文挑战第4天】
14 2
|
8天前
|
Ubuntu 编译器 Linux
go语言中SQLite3驱动安装
【11月更文挑战第2天】
30 7
|
8天前
|
关系型数据库 Go 网络安全
go语言中PostgreSQL驱动安装
【11月更文挑战第2天】
38 5
|
8天前
|
安全 Go
用 Zap 轻松搞定 Go 语言中的结构化日志
在现代应用程序开发中,日志记录至关重要。Go 语言中有许多日志库,而 Zap 因其高性能和灵活性脱颖而出。本文详细介绍如何在 Go 项目中使用 Zap 进行结构化日志记录,并展示如何定制日志输出,满足生产环境需求。通过基础示例、SugaredLogger 的便捷使用以及自定义日志配置,帮助你在实际开发中高效管理日志。
25 1
|
7天前
|
程序员 Go
go语言中的控制结构
【11月更文挑战第3天】
84 58
|
6天前
|
监控 Go API
Go语言在微服务架构中的应用实践
在微服务架构的浪潮中,Go语言以其简洁、高效和并发处理能力脱颖而出,成为构建微服务的理想选择。本文将探讨Go语言在微服务架构中的应用实践,包括Go语言的特性如何适应微服务架构的需求,以及在实际开发中如何利用Go语言的特性来提高服务的性能和可维护性。我们将通过一个具体的案例分析,展示Go语言在微服务开发中的优势,并讨论在实际应用中可能遇到的挑战和解决方案。
|
7天前
|
存储 编译器 Go
go语言中的变量、常量、数据类型
【11月更文挑战第3天】
25 9