Go并发和通道

简介: 1.Go 并发Go 语言支持并发,我们只需要通过 go 关键字来开启 goroutine 即可。goroutine 是轻量级线程,goroutine 的调度是由 Golang 运行时进行管理的。goroutine 语法格式:🙌


1.Go 并发


Go 语言支持并发,我们只需要通过 go 关键字来开启 goroutine 即可。

goroutine 是轻量级线程,goroutine 的调度是由 Golang 运行时进行管理的。

goroutine 语法格式:🙌


go 函数名( 参数列表 )


Go 允许使用 go 语句开启一个新的运行期线程, 即 goroutine,以一个不同的、新创建的 goroutine 来执行一个函数。 同一个程序中的所有 goroutine 共享同一个地址空间


package main
import (
  "fmt"
  "time"
)
func say(s string) {
  for i := 0; i < 5; i++ {
    time.Sleep(100 * time.Millisecond)
    fmt.Println(s)
  }
}
func main() {
  go say("world")
  say("hello")
}
---------------------------------
输出:
hello
world
world
hello
hello
world
world
hello
hello


执行以上代码,你会看到输出的 hello 和 world 是没有固定先后顺序。因为它们是两个 goroutine 在执行🥯


2.通道(channel)


通道(channel)是用来传递数据的一个数据结构。


通道可用于两个 goroutine 之间通过传递一个指定类型的值来同步运行和通讯。操作符 <- 用于指定通道的方向,发送或接收。如果未指定方向,则为双向通道。


ch <- v    // 把 v 发送到通道 ch
v := <-ch  // 从 ch 接收数据
           // 并把值赋给 v


注意:默认情况下,通道是不带缓冲区的。发送端发送数据,同时必须有接收端相应的接收数据。🥖

实例1:通过两个 goroutine 来计算数字之和,在 goroutine 完成计算后,它会计算两个结果的和


package main
import "fmt"
func sum(s []int, c chan int) {
        sum := 0
        for _, v := range s {
                sum += v
        }
        c <- sum // 把 sum 发送到通道 c
}
func main() {
        s := []int{7, 2, 8, -9, 4, 0}
        c := make(chan int)
        go sum(s[:len(s)/2], c)
        go sum(s[len(s)/2:], c)
        x, y := <-c, <-c // 从通道 c 中接收
        fmt.Println(x, y, x+y)  // -5 17 12
}


通道缓冲区

通道可以设置缓冲区,通过 make 的第二个参数指定缓冲区大小:


ch := make(chan int, 100)


带缓冲区的通道允许发送端的数据发送和接收端的数据获取处于异步状态,就是说发送端发送的数据可以放在缓冲区里面,可以等待接收端去获取数据,而不是立刻需要接收端去获取数据。

不过由于缓冲区的大小是有限的,所以还是必须有接收端来接收数据的,否则缓冲区一满,数据发送端就无法再发送数据了。

注意:如果通道不带缓冲,发送方会阻塞直到接收方从通道中接收了值。如果通道带缓冲,发送方则会阻塞直到发送的值被拷贝到缓冲区内;如果缓冲区已满,则意味着需要等待直到某个接收方获取到一个值。接收方在有值可以接收之前会一直阻塞。

实例2:利用缓冲区


package main
import "fmt"
func main() {
    // 这里我们定义了一个可以存储整数类型的带缓冲通道
        // 缓冲区大小为2
        ch := make(chan int, 2)
        // 因为 ch 是带缓冲的通道,我们可以同时发送两个数据
        // 而不用立刻需要去同步读取数据
        ch <- 1
        ch <- 2
        // 获取这两个数据
        fmt.Println(<-ch)  // 1
        fmt.Println(<-ch)  // 2
}


Go 遍历通道与关闭通道

Go 通过 range 关键字来实现遍历读取到的数据,类似于与数组或切片。格式如下:


v, ok := <-ch


如果通道接收不到数据后 ok 就为 false,这时通道就可以使用 close() 函数来关闭。

实例3:


package main
import (
        "fmt"
)
func fibonacci(n int, c chan int) {
        x, y := 0, 1
        for i := 0; i < n; i++ {
                c <- x
                x, y = y, x+y
        }
        close(c)
}
func main() {
        c := make(chan int, 10)
        go fibonacci(cap(c), c)
        // range 函数遍历每个从通道接收到的数据,因为 c 在发送完 10 个
        // 数据之后就关闭了通道,所以这里我们 range 函数在接收到 10 个数据
        // 之后就结束了。如果上面的 c 通道不关闭,那么 range 函数就不
        // 会结束,从而在接收第 11 个数据的时候就阻塞了。
        for i := range c {
                fmt.Println(i)
        }
}
-----------------------------------------
输出:
0
1
1
2
3
5
8
13
21
34
目录
相关文章
|
8月前
|
人工智能 安全 算法
Go入门实战:并发模式的使用
本文详细探讨了Go语言的并发模式,包括Goroutine、Channel、Mutex和WaitGroup等核心概念。通过具体代码实例与详细解释,介绍了这些模式的原理及应用。同时分析了未来发展趋势与挑战,如更高效的并发控制、更好的并发安全及性能优化。Go语言凭借其优秀的并发性能,在现代编程中备受青睐。
255 33
|
7月前
|
存储 Go 开发者
Go 语言中如何处理并发错误
在 Go 语言中,并发编程中的错误处理尤为复杂。本文介绍了几种常见的并发错误处理方法,包括 panic 的作用范围、使用 channel 收集错误与结果,以及使用 errgroup 包统一管理错误和取消任务,帮助开发者编写更健壮的并发程序。
166 4
Go 语言中如何处理并发错误
|
5月前
|
数据采集 Go API
Go语言实战案例:多协程并发下载网页内容
本文是《Go语言100个实战案例 · 网络与并发篇》第6篇,讲解如何使用 Goroutine 和 Channel 实现多协程并发抓取网页内容,提升网络请求效率。通过实战掌握高并发编程技巧,构建爬虫、内容聚合器等工具,涵盖 WaitGroup、超时控制、错误处理等核心知识点。
|
5月前
|
数据采集 消息中间件 编解码
Go语言实战案例:使用 Goroutine 并发打印
本文通过简单案例讲解 Go 语言核心并发模型 Goroutine,涵盖协程启动、输出控制、主程序退出机制,并结合 sync.WaitGroup 实现并发任务同步,帮助理解 Go 并发设计思想与实际应用。
|
7月前
|
Go 开发者
Go 并发编程基础:无缓冲与有缓冲通道
本章深入探讨Go语言中通道(Channel)的两种类型:无缓冲通道与有缓冲通道。无缓冲通道要求发送和接收必须同步配对,适用于精确同步和信号通知;有缓冲通道通过内部队列实现异步通信,适合高吞吐量和生产者-消费者模型。文章通过示例对比两者的行为差异,并分析死锁风险及使用原则,帮助开发者根据场景选择合适的通道类型以实现高效并发编程。
|
9月前
|
数据采集 监控 Go
用 Go 实现一个轻量级并发任务调度器(支持限速)
本文介绍了如何用 Go 实现一个轻量级的并发任务调度器,解决日常开发中批量任务处理的需求。调度器支持最大并发数控制、速率限制、失败重试及结果收集等功能。通过示例代码展示了其使用方法,并分析了核心组件设计,包括任务(Task)和调度器(Scheduler)。该工具适用于网络爬虫、批量请求等场景。文章最后总结了 Go 并发模型的优势,并提出了扩展功能的方向,如失败回调、超时控制等,欢迎读者交流改进。
384 25
|
11月前
|
存储 缓存 安全
Go 语言中的 Sync.Map 详解:并发安全的 Map 实现
`sync.Map` 是 Go 语言中用于并发安全操作的 Map 实现,适用于读多写少的场景。它通过两个底层 Map(`read` 和 `dirty`)实现读写分离,提供高效的读性能。主要方法包括 `Store`、`Load`、`Delete` 等。在大量写入时性能可能下降,需谨慎选择使用场景。
|
存储 Go 开发者
Go语言中的并发编程与通道(Channel)的深度探索
本文旨在深入探讨Go语言中并发编程的核心概念和实践,特别是通道(Channel)的使用。通过分析Goroutines和Channels的基本工作原理,我们将了解如何在Go语言中高效地实现并行任务处理。本文不仅介绍了基础语法和用法,还深入讨论了高级特性如缓冲通道、选择性接收以及超时控制等,旨在为读者提供一个全面的并发编程视角。
303 50
|
安全 Java Go
Go语言中的并发编程:掌握goroutine与通道的艺术####
本文深入探讨了Go语言中的核心特性——并发编程,通过实例解析goroutine和通道的高效使用技巧,旨在帮助开发者提升多线程程序的性能与可靠性。 ####
|
存储 负载均衡 监控
如何利用Go语言的高效性、并发支持、简洁性和跨平台性等优势,通过合理设计架构、实现负载均衡、构建容错机制、建立监控体系、优化数据存储及实施服务治理等步骤,打造稳定可靠的服务架构。
在数字化时代,构建高可靠性服务架构至关重要。本文探讨了如何利用Go语言的高效性、并发支持、简洁性和跨平台性等优势,通过合理设计架构、实现负载均衡、构建容错机制、建立监控体系、优化数据存储及实施服务治理等步骤,打造稳定可靠的服务架构。
303 1

热门文章

最新文章