1002. A+B for Polynomials(25分)

简介: 1002. A+B for Polynomials(25分)

1002. A+B for Polynomials(25分)


This time, you are supposed to find A+B where A and B are two polynomials.


Input Specification:

Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial:


K N1 aN1 N2 aN2 … NK aNK


where K is the number of nonzero terms in the polynomial, Ni and aNi (i=1,2,⋯,K) are the exponents and coefficients, respectively. It is given that 1≤K≤10,0≤NK<⋯<N2<N1≤1000.


Output Specification:

For each test case you should output the sum of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate to 1 decimal place.


Sample Input:

2 1 2.4 0 3.2
2 2 1.5 1 0.5
结尾无空行


Sample Output:

3 2 1.5 1 2.9 0 3.2
结尾无空行
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
struct node
{
    int z;
    float x;
};
bool compare(node A, node B)
{
    return A.z > B.z;
}
int main()
{
    vector<node> A, B, C;
    node tmp;
    int a, b;
    cin >> a;
    for (int i = 0; i < a; i++)
    {
        cin >> tmp.z >> tmp.x;
        A.push_back(tmp);
    }
    cin >> b;
    for (int i = 0; i < b; i++)
    {
        cin >> tmp.z >> tmp.x;
        B.push_back(tmp);
    }
    // 排序
    sort(A.begin(), A.end(), compare);
    sort(B.begin(), B.end(), compare);
    // 双指针法
    int i, j;
    for (i = 0, j = 0; i < a && j < b;)
    {
        if (A[i].z > B[j].z)
        {
            tmp = A[i++];
            C.push_back(tmp);
        }
        else if (A[i].z < B[j].z)
        {
            tmp = B[j++];
            C.push_back(tmp);
        }
        else
        {
            tmp.z = A[i].z;
            tmp.x = A[i++].x + B[j++].x;
            // 系数为零就抵消了
            if (tmp.x)
            {
            C.push_back(tmp);
            }
        }
    }
    // 余值按序插入,2个while只有一个会被执行
    while (i < a)
    {
        tmp = A[i++];
        C.push_back(tmp);
    }
    while (j < b)
    {
        tmp = B[j++];
        C.push_back(tmp);
    }
    // 输出
    cout << C.size();
    for (node it : C)
    {
        printf(" %d %.1f", it.z, it.x);
    }
    system("pause");
    return 0;
}


受最近数据结构的影响,思维还没转变过来。想到的是传统的结构体解法,合并多项式借用了归并排序的思想,先将2个多项式降序排序,然后双指针法合并。卡壳的主要原因是没有考虑多项式相加为零要剔除的情况。

#include <iostream>
using namespace std;
int main()
{
    double N[1005] = {0};
    for (int i = 0; i < 2; i++)
    {
        int len;
        cin >> len;
        for (int k = 0; k < len; k++)
        {
            int z;
            double x;
            cin >> z >> x;
            N[z] += x;
        }
    }
    int count = 0;
    for (int i = 0; i <= 1000; i++)
    {
        if (N[i] != 0)
        {
            count++;
        }
    }
    cout << count;
    for (int i = 1000; i >= 0; i--)
    {
        if (N[i] != 0)
        {
            printf(" %d %.1f", i, N[i]);
        }
    }
    return 0;
}


数组下标表示指数,数组元素表示系数。简单明了。

目录
相关文章
|
5月前
1071 小赌怡情 (15 分)
1071 小赌怡情 (15 分)
|
5月前
1002 A+B for Polynomials (25 分)
1002 A+B for Polynomials (25 分)
L1-070 吃火锅 (15 分)
L1-070 吃火锅 (15 分)
146 0
L1-070 吃火锅 (15 分)
L1-044 稳赢 (15 分)
L1-044 稳赢 (15 分)
151 0
L1-044 稳赢 (15 分)
L2-1 包装机 (25 分)
L2-1 包装机 (25 分)
150 0
L2-1 包装机 (25 分)
L3-011 直捣黄龙 (30 分)
L3-011 直捣黄龙 (30 分)
130 0
L1-047 装睡 (10 分)
L1-047 装睡 (10 分)
119 0
L1-011 A-B (20 分)
L1-011 A-B (20 分)
162 0
L1-030 一帮一 (15 分)
L1-030 一帮一 (15 分)
128 0
L1-018 大笨钟 (10 分)
L1-018 大笨钟 (10 分)
100 0