分形之城(0x02 递推与递归)

简介: 笔记

分形之城


题意

城市的规划在城市建设中是个大问题。


不幸的是,很多城市在开始建设的时候并没有很好的规划,城市规模扩大之后规划不合理的问题就开始显现。


而这座名为 Fractal 的城市设想了这样的一个规划方案,如下图所示:


41.png


当城区规模扩大之后,Fractal 的解决方案是把和原来城区结构一样的区域按照图中的方式建设在城市周围,提升城市的等级。


对于任意等级的城市,我们把正方形街区从左上角开始按照道路标号。


虽然这个方案很烂,Fractal 规划部门的人员还是想知道,如果城市发展到了等级 N,编号为 A 和 B 的两个街区的直线距离是多少。


街区的距离指的是街区的中心点之间的距离,每个街区都是边长为 10 米的正方形。


思路

43.png

1.z == 0 时,表示要求的房屋在第一个 1 级城市中,1 级城市经过顺时针旋转90°再水平翻转后得到 2 级城市左上角的部分


(0,0) —> (0,0)


(0,1) —> (1,0)


(1,0) —> (0,1)


(1,1) —> (1,1)


所以坐标变换为 (x,y) —> (y,x)


2.z == 1 时,表示要求的房屋在第二个 1 级城市中,1 级城市经过向右平移得到 2 级城市右上角的部分


(0,0) —> (0,2)


(0,1) —> (0,3)


(1,0) —> (1,2)


(1,1) —> (1,3)


所以坐标变换为 (x,y) —> (x,y + len) len为 n - 1级城市的边长


3.z ==2 时,表示要求的房屋在第三个 1 级城市中,1级城市经过向右再向下平移得到 2 级城市右下角的部分


(0,0) —> (2,2)


(0,1) —> (2,3)


(1,0) —> (3,2)


(1,1) —> (3,3)


所以坐标变换表示为 (x,y) —> (x + len, y + len) len为 n - 1级城市的边长


4.z == 3 时,表示要求的房屋在第四个 1 级城市中,1级城市经过逆时针旋转90°再向下平移得到 2 级城市的左下角的部分


(0,0) —> (3,1)


(0,1) —> (2,1)


(1,0) —> (2,0)


(1,1) —> (3,0)


所以坐标 变换表示为 (x,y) —> (2 * len - y - 1, len - x - 1) len为 n - 1级城市的边长


为方便起见,将房屋从 0 开始编号,相应的,求a - 1 b - 1的位置然后计算距离,最后距离乘以 10 即可(因为每个街区都是 10米的正方形)


代码

#include<bits/stdc++.h>
#include<unordered_map>
// #define int long long
#define INF 0x3f3f3f3f
#define mod 1000000007
#define rep(i, st, ed) for (int (i) = (st); (i) <= (ed);++(i))
#define pre(i, ed, st) for (int (i) = (ed); (i) >= (st);--(i))
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
template<typename T> inline T gcd(T a, T b) { return b ? gcd(b, a % b) : a; }
template<typename T> inline T lowbit(T x) { return x & -x; }
const int N = 100;
pair<LL, LL>cal(LL n, LL m) {
  if (n == 0)return { 0,0 };
  LL cnt = 1ll << (2 * n - 2);
  LL len = 1ll << (n - 1);
  pair<LL, LL>t = cal(n - 1, m % cnt); // 求出 n - 1 级地图中的位置
  LL x = t.first, y = t.second;
  LL z = m / cnt; // 在上一级的哪个区域里
  if (z == 0)return { y,x };
  else if (z == 1)return { x,y + len };
  else if (z == 3)return { 2 * len - y - 1, len - x - 1 };
  else return { x + len,y + len };
}
void solve() {
  LL n, a, b; cin >> n >> a >> b;
  pair<LL, LL>p1 = cal(n, a - 1);
  pair<LL, LL>p2 = cal(n, b - 1);
  printf("%.0lf\n", sqrt((p1.first - p2.first) * (p1.first - p2.first) + (p1.second - p2.second) * (p1.second - p2.second)) * 10);
}
signed main() {
  int t; cin >> t;
  while (t--)
    solve();
  return 0;
}



目录
相关文章
|
5月前
|
算法 定位技术
探寻最短路径之谜:Dijkstra算法详解
探寻最短路径之谜:Dijkstra算法详解
|
6月前
|
算法
讲课:拓扑排序、最短路算法
讲课:拓扑排序、最短路算法
|
6月前
|
算法 测试技术 C++
【动态规划】【数学】【C++算法】18赛车
【动态规划】【数学】【C++算法】18赛车
|
6月前
|
算法
再探二分法
【2月更文挑战第5天】
55 3
|
6月前
|
安全 算法 测试技术
【动态规划】【广度优先】LeetCode2258:逃离火灾
【动态规划】【广度优先】LeetCode2258:逃离火灾
|
算法
【过河卒】回溯算法保姆式解题
【过河卒】回溯算法保姆式解题
94 0
|
算法 C++
蓝桥杯(聪明的猴子)克鲁斯卡尔算法最小生成树
蓝桥杯(聪明的猴子)克鲁斯卡尔算法最小生成树
106 0
|
算法 定位技术
图论的灵魂——带你走进迪杰斯特拉算法的世界
图论的灵魂——带你走进迪杰斯特拉算法的世界
图论的灵魂——带你走进迪杰斯特拉算法的世界
|
算法 Windows
算法简单题,吾辈重拳出击 - 第 N 个泰波那契数
听说过斐波那契数列,那你听说过泰波那契数列吗?
|
算法
算法竞赛百日——快速排序 - 分治
算法竞赛百日——快速排序 - 分治
算法竞赛百日——快速排序 - 分治