上篇文章思考题
答案:
can not use nums(type [6]int) as type[5]int
注意:一个数组类型,包含元素类型和长度,不同长度,同样的元素也是不一样的类型。因此,今天的切片就很有意义。
简介
- 切片是引用类型
- 长度可以变化,容量随长度变化
- 是结构体-->可查看源代码
切片即动态数组,底层在当前数组不够用时,开辟更大的数组,拷贝后再增加元素。
声明
var 变量名 []type
func make(Type, size ...IntegerType[,capacity]) Type
内建函数make分配并初始化一个类型为切片、映射、或通道的对象。其第一个实参为类型,而非值。make的返回类型与其参数相同,而非指向它的指针。其具体结果取决于具体的类型:
切片:size指定了其长度。该切片的容量等于其长度。切片支持第二个整数实参可用来指定不同的容量;它必须不小于其长度,因此 make([]int, 0, 10) 会分配一个长度为0,容量为10的切片。
capacity可选,默认为指定的长度,make底层也有数组,不可见
源代码查看
src->runtime->slice.go
func makeslice(et *_type, len, cap int) unsafe.Pointer { mem, overflow := math.MulUintptr(et.size, uintptr(cap)) if overflow || mem > maxAlloc || len < 0 || len > cap { // NOTE: Produce a 'len out of range' error instead of a // 'cap out of range' error when someone does make([]T, bignumber). // 'cap out of range' is true too, but since the cap is only being // supplied implicitly, saying len is clearer. // See golang.org/issue/4085. mem, overflow := math.MulUintptr(et.size, uintptr(len)) if overflow || mem > maxAlloc || len < 0 { panicmakeslicelen() } panicmakeslicecap() } return mallocgc(mem, et, true) }
切片声明代码
var slice []int slice1 := make([]int,5) fmt.Println("slice slice1:",slice,slice1)
声明并初始化
一般形式
类似数组,直接写后面花括号里面,代码:
slice2 := []int{1,2,3,4}
引用数组
给出数组数据
arr := [5]int{5,6,7,8,9}
slice[start:end],默认:start=0,end =len(arr)
代码
slice3 := arr[1:]
引用切片
和引用数组类似
slice4 := slice3[1:]
切片及数组在内存的情况,请查看后序内存一节。
遍历
for
for i:=0;i<len(slice3);i++{ fmt.Print(slice3[i]," ") }
for range
for _,v := range slice3{ fmt.Print(v," ") }
内存
查看结构体的具体内容
src->reflect->type.go
1. type SliceHeader struct { 2. Data uintptr 3. Len int 4. Cap int 5. }
编译时创建切片代码
src->cmd->compile->types
// NewSlice returns the slice Type with element type elem. func NewSlice(elem *Type) *Type { if t := elem.Cache.slice; t != nil { if t.Elem() != elem { Fatalf("elem mismatch") } return t } t := New(TSLICE) t.Extra = Slice{Elem: elem} elem.Cache.slice = t return t }
fmt.Printf("&slice1:%p,&slice1[0]:%v\n", &slice1, &slice1[0]) fmt.Printf("&arr:%p &arr[1]:%v &slice3:%p &slice3[0]:%v\n",&arr,&arr[1],&slice3,&slice3[0]) fmt.Printf("&slice4:%p &slice4[0]:%v\n",&slice4,&slice4[0]) arr[2] = 99 fmt.Println("slice3[1] slice4[0]",slice3[1],slice4[0])
slice1内存
arr、slice3、slice4内存
函数/方法
长度与容量
len、cap函数获取长度和容量
代码
fmt.Println("len(slice3) cap(slice3) len(slice4) cap(slice4):", len(slice3), cap(slice3), len(slice4), cap(slice4))
追加与拷贝
append
func append(slice []Type, elems ...Type) []Type
内建函数append将元素追加到切片的末尾。若它有足够的容量,其目标就会重新切片以容纳新的元素。否则,就会分配一个新的基本数组。append返回更新后的切片,因此必须存储追加后的结果。
查看slice增长源代码
src->runtime->slice.go
// growslice handles slice growth during append. // It is passed the slice element type, the old slice, and the desired new minimum capacity, // and it returns a new slice with at least that capacity, with the old data // copied into it. // The new slice's length is set to the old slice's length, // NOT to the new requested capacity. // This is for codegen convenience. The old slice's length is used immediately // to calculate where to write new values during an append. // TODO: When the old backend is gone, reconsider this decision. // The SSA backend might prefer the new length or to return only ptr/cap and save stack space. func growslice(et *_type, old slice, cap int) slice { if raceenabled { callerpc := getcallerpc() racereadrangepc(old.array, uintptr(old.len*int(et.size)), callerpc, funcPC(growslice)) } if msanenabled { msanread(old.array, uintptr(old.len*int(et.size))) } if cap < old.cap { panic(errorString("growslice: cap out of range")) } if et.size == 0 { // append should not create a slice with nil pointer but non-zero len. // We assume that append doesn't need to preserve old.array in this case. return slice{unsafe.Pointer(&zerobase), old.len, cap} } newcap := old.cap doublecap := newcap + newcap if cap > doublecap { newcap = cap } else { if old.cap < 1024 { newcap = doublecap } else { // Check 0 < newcap to detect overflow // and prevent an infinite loop. for 0 < newcap && newcap < cap { newcap += newcap / 4 } // Set newcap to the requested cap when // the newcap calculation overflowed. if newcap <= 0 { newcap = cap } } } var overflow bool var lenmem, newlenmem, capmem uintptr // Specialize for common values of et.size. // For 1 we don't need any division/multiplication. // For sys.PtrSize, compiler will optimize division/multiplication into a shift by a constant. // For powers of 2, use a variable shift. switch { case et.size == 1: lenmem = uintptr(old.len) newlenmem = uintptr(cap) capmem = roundupsize(uintptr(newcap)) overflow = uintptr(newcap) > maxAlloc newcap = int(capmem) case et.size == sys.PtrSize: lenmem = uintptr(old.len) * sys.PtrSize newlenmem = uintptr(cap) * sys.PtrSize capmem = roundupsize(uintptr(newcap) * sys.PtrSize) overflow = uintptr(newcap) > maxAlloc/sys.PtrSize newcap = int(capmem / sys.PtrSize) case isPowerOfTwo(et.size): var shift uintptr if sys.PtrSize == 8 { // Mask shift for better code generation. shift = uintptr(sys.Ctz64(uint64(et.size))) & 63 } else { shift = uintptr(sys.Ctz32(uint32(et.size))) & 31 } lenmem = uintptr(old.len) << shift newlenmem = uintptr(cap) << shift capmem = roundupsize(uintptr(newcap) << shift) overflow = uintptr(newcap) > (maxAlloc >> shift) newcap = int(capmem >> shift) default: lenmem = uintptr(old.len) * et.size newlenmem = uintptr(cap) * et.size capmem, overflow = math.MulUintptr(et.size, uintptr(newcap)) capmem = roundupsize(capmem) newcap = int(capmem / et.size) } // The check of overflow in addition to capmem > maxAlloc is needed // to prevent an overflow which can be used to trigger a segfault // on 32bit architectures with this example program: // // type T [1<<27 + 1]int64 // // var d T // var s []T // // func main() { // s = append(s, d, d, d, d) // print(len(s), "\n") // } if overflow || capmem > maxAlloc { panic(errorString("growslice: cap out of range")) } var p unsafe.Pointer if et.ptrdata == 0 { p = mallocgc(capmem, nil, false) // The append() that calls growslice is going to overwrite from old.len to cap (which will be the new length). // Only clear the part that will not be overwritten. memclrNoHeapPointers(add(p, newlenmem), capmem-newlenmem) } else { // Note: can't use rawmem (which avoids zeroing of memory), because then GC can scan uninitialized memory. p = mallocgc(capmem, et, true) if lenmem > 0 && writeBarrier.enabled { // Only shade the pointers in old.array since we know the destination slice p // only contains nil pointers because it has been cleared during alloc. bulkBarrierPreWriteSrcOnly(uintptr(p), uintptr(old.array), lenmem-et.size+et.ptrdata) } } memmove(p, old.array, lenmem) return slice{p, old.len, newcap} }
代码
newSlice3 := append(slice3, 110,119) newSlice4 := append(slice4,slice3...)
拷贝
func copy(dst, src []Type) int
内建函数copy将元素从来源切片复制到目标切片中,也能将字节从字符串复制到字节切片中。copy返回被复制的元素数量,它会是 len(src) 和 len(dst) 中较小的那个。来源和目标的底层内存可以重叠。
注意:目标长度放不下时,后序的就不再拷贝了
代码
copy(slice3, slice1)
排序
func Ints(a []int)
Ints函数将a排序为递增顺序。
代码
sort.Ints(newSlice3)
插入与删除
没有,自己实现,见后面
函数传参
值传递
func byteInsert(b []byte,index int,data byte) []byte{ //-----索引越界------ if index<0 || index>len(b){ return []byte{} } //------前插------- if index == 0{ return append([]byte{data}, b...) } //------尾插------- if index == len(b){ return append(b, data) } //------中间插------ tmp := append(b[:index],data) return append(tmp,b[index:]...) }
使用
//-----值传递------ hello := []byte("el") hello = byteInsert(hello,0,'h') fmt.Printf("hello:%c\n",hello) hello = byteInsert(hello,2,'l') fmt.Printf("hello:%c\n",hello) hello = byteInsert(hello,4,'o') fmt.Printf("hello:%c\n",hello)
引用传递
func byteDelete(b *[]byte,index int){ //-----索引越界------ if index<0 || index>=len(*b){ return } //------前删------- if index == 0{ *b = (*b)[1:] return } //------尾删------- if index == len(*b)-1{ *b = (*b)[:len(*b)-1] return } //------中间删------ *b = append((*b)[0:index],(*b)[index+1:]...) return }
使用
world := []byte("world") byteDelete(&world,0) fmt.Printf("world:%c\n",world) byteDelete(&world,3) fmt.Printf("world:%c\n",world) byteDelete(&world,1) fmt.Printf("world:%c\n",world)
注意事项
- 引用数组,左闭右开
- append新的数组给切片,字符串可添加到[]byte切片
- copy不扩容,切片满了为止
全部代码
package main import ( "fmt" "sort" ) func byteInsert(b []byte,index int,data byte) []byte{ //-----索引越界------ if index<0 || index>len(b){ return []byte{} } //------前插------- if index == 0{ return append([]byte{data}, b...) } //------尾插------- if index == len(b){ return append(b, data) } //------中间插------ tmp := append(b[:index],data) return append(tmp,b[index:]...) } func byteDelete(b *[]byte,index int){ //-----索引越界------ if index<0 || index>=len(*b){ return } //------前删------- if index == 0{ *b = (*b)[1:] return } //------尾删------- if index == len(*b)-1{ *b = (*b)[:len(*b)-1] return } //------中间删------ *b = append((*b)[0:index],(*b)[index+1:]...) return } func main() { //-----------------------声明-------------------- var slice []int slice1 := make([]int,5) fmt.Println("slice slice1:",slice,slice1) //--------------------声明并初始化----------------- //---------一般形式--------- slice2 := []int{1,2,3,4} //---------从数组切片-------- arr := [5]int{5,6,7,8,9} slice3 := arr[1:] //---------从切片切片------- slice4 := slice3[1:] fmt.Println("slice2 slice3 slice4:",slice2,slice3,slice4) //--------------------遍历----------------------- //-----for----- fmt.Println("slice3:") for i:=0;i<len(slice3);i++{ fmt.Print(slice3[i]," ") } fmt.Println() //-----for range---- fmt.Println("slice3:") for _,v := range slice3{ fmt.Print(v," ") } fmt.Println() //----------------内存--------------------------- fmt.Printf("&slice1:%p,&slice1[0]:%v\n", &slice1, &slice1[0]) fmt.Printf("&arr:%p &arr[1]:%v &slice3:%p &slice3[0]:%v\n",&arr,&arr[1],&slice3,&slice3[0]) fmt.Printf("&slice4:%p &slice4[0]:%v\n",&slice4,&slice4[0]) arr[2] = 99 fmt.Println("slice3[1] slice4[0]",slice3[1],slice4[0]) //-----------------函数------------------------- //-------长度和容量---------- fmt.Println("len(slice3) cap(slice3) len(slice4) cap(slice4):", len(slice3), cap(slice3), len(slice4), cap(slice4)) //-------添加和拷贝------------ newSlice3 := append(slice3, 110,119) newSlice4 := append(slice4,slice3...) copy(slice3, slice1) fmt.Println("slice3追加后 slice4追加slice3后 slice3拷贝slice1后:",newSlice3,newSlice4,slice3) //--------排序------------------ sort.Ints(newSlice3) fmt.Println("升序newSlice3:",newSlice3) //---------------插入和删除--------------------- //-----值传递------ hello := []byte("el") hello = byteInsert(hello,0,'h') fmt.Printf("hello:%c\n",hello) hello = byteInsert(hello,2,'l') fmt.Printf("hello:%c\n",hello) hello = byteInsert(hello,4,'o') fmt.Printf("hello:%c\n",hello) //------引用传递--------- world := []byte("world") byteDelete(&world,0) fmt.Printf("world:%c\n",world) byteDelete(&world,3) fmt.Printf("world:%c\n",world) byteDelete(&world,1) fmt.Printf("world:%c\n",world) }
结果截图
参考
更多Go相关内容:Go-Golang学习总结笔记
有问题请下方评论,转载请注明出处,并附有原文链接,谢谢!如有侵权,请及时联系。