驱动开发:内核中实现Dump进程转储

简介: 多数ARK反内核工具中都存在驱动级别的内存转存功能,该功能可以将应用层中运行进程的内存镜像转存到特定目录下,内存转存功能在应对加壳程序的分析尤为重要,当进程在内存中解码后,我们可以很容易的将内存镜像导出,从而更好的对样本进行分析,当然某些加密壳可能无效但绝大多数情况下是可以被转存的。

多数ARK反内核工具中都存在驱动级别的内存转存功能,该功能可以将应用层中运行进程的内存镜像转存到特定目录下,内存转存功能在应对加壳程序的分析尤为重要,当进程在内存中解码后,我们可以很容易的将内存镜像导出,从而更好的对样本进行分析,当然某些加密壳可能无效但绝大多数情况下是可以被转存的。

image.png

在上一篇文章《驱动开发:内核R3与R0内存映射拷贝》介绍了一种方式SafeCopyMemory_R3_to_R0可以将应用层进程的内存空间映射到内核中,要实现内存转储功能我们还是需要使用这个映射函数,只是需要在此函数上增加一些功能而已。

在实现转存之前,需要得到两个东西,进程内模块基地址以及模块长度这两个参数是必不可少的,至于内核中如何得到指定进程的模块数据,在很早之前的文章《驱动开发:内核中枚举进线程与模块》中有详细的参考方法,这里就在此基础之上实现一个简单的进程模块遍历功能。

如下代码中使用的就是枚举进程PEB结构得到更多参数的具体实现,如果不懂得可以研读《驱动开发:内核通过PEB得到进程参数》这篇文章此处不再赘述。

#include <ntddk.h>
#include <windef.h>

// 声明结构体
typedef struct _KAPC_STATE
{
    LIST_ENTRY ApcListHead[2];
    PKPROCESS Process;
    UCHAR KernelApcInProgress;
    UCHAR KernelApcPending;
    UCHAR UserApcPending;
} KAPC_STATE, *PKAPC_STATE;

typedef struct _LDR_DATA_TABLE_ENTRY
{
    LIST_ENTRY64    InLoadOrderLinks;
    LIST_ENTRY64    InMemoryOrderLinks;
    LIST_ENTRY64    InInitializationOrderLinks;
    PVOID            DllBase;
    PVOID            EntryPoint;
    ULONG            SizeOfImage;
    UNICODE_STRING    FullDllName;
    UNICODE_STRING     BaseDllName;
    ULONG            Flags;
    USHORT            LoadCount;
    USHORT            TlsIndex;
    PVOID            SectionPointer;
    ULONG            CheckSum;
    PVOID            LoadedImports;
    PVOID            EntryPointActivationContext;
    PVOID            PatchInformation;
    LIST_ENTRY64    ForwarderLinks;
    LIST_ENTRY64    ServiceTagLinks;
    LIST_ENTRY64    StaticLinks;
    PVOID            ContextInformation;
    ULONG64            OriginalBase;
    LARGE_INTEGER    LoadTime;
} LDR_DATA_TABLE_ENTRY, *PLDR_DATA_TABLE_ENTRY;

// 偏移地址
ULONG64 LdrInPebOffset = 0x018;        //peb.ldr
ULONG64 ModListInPebOffset = 0x010;    //peb.ldr.InLoadOrderModuleList

// 声明API
NTKERNELAPI UCHAR* PsGetProcessImageFileName(IN PEPROCESS Process);
NTKERNELAPI PPEB PsGetProcessPeb(PEPROCESS Process);
NTKERNELAPI HANDLE PsGetProcessInheritedFromUniqueProcessId(IN PEPROCESS Process);

// 根据进程ID返回进程EPROCESS,失败返回NULL
PEPROCESS LookupProcess(HANDLE Pid)
{
    PEPROCESS eprocess = NULL;
    if (NT_SUCCESS(PsLookupProcessByProcessId(Pid, &eprocess)))
        return eprocess;
    else
        return NULL;
}

// 枚举指定进程的模块
// By: LyShark.com
VOID EnumModule(PEPROCESS Process)
{
    SIZE_T Peb = 0;
    SIZE_T Ldr = 0;
    PLIST_ENTRY ModListHead = 0;
    PLIST_ENTRY Module = 0;
    ANSI_STRING AnsiString;
    KAPC_STATE ks;
    
    // EPROCESS地址无效则退出
    if (!MmIsAddressValid(Process))
        return;
    
    // 获取PEB地址
    Peb = (SIZE_T)PsGetProcessPeb(Process);
    
    // PEB地址无效则退出
    if (!Peb)
        return;
    
    // 依附进程
    KeStackAttachProcess(Process, &ks);
    __try
    {
        // 获得LDR地址
        Ldr = Peb + (SIZE_T)LdrInPebOffset;
        // 测试是否可读,不可读则抛出异常退出
        ProbeForRead((CONST PVOID)Ldr, 8, 8);
        // 获得链表头
        ModListHead = (PLIST_ENTRY)(*(PULONG64)Ldr + ModListInPebOffset);
        // 再次测试可读性
        ProbeForRead((CONST PVOID)ModListHead, 8, 8);
        // 获得第一个模块的信息
        Module = ModListHead->Flink;
        
        while (ModListHead != Module)
        {
            //打印信息:基址、大小、DLL路径
            DbgPrint("模块基址 = %p | 大小 = %ld | 模块名 = %wZ | 完整路径= %wZ \n",
                (PVOID)(((PLDR_DATA_TABLE_ENTRY)Module)->DllBase),
                (ULONG)(((PLDR_DATA_TABLE_ENTRY)Module)->SizeOfImage),
                &(((PLDR_DATA_TABLE_ENTRY)Module)->BaseDllName),
                &(((PLDR_DATA_TABLE_ENTRY)Module)->FullDllName)
                );
            Module = Module->Flink;
            
            // 测试下一个模块信息的可读性
            ProbeForRead((CONST PVOID)Module, 80, 8);
        }
    }
    __except (EXCEPTION_EXECUTE_HANDLER){ ; }
    
    // 取消依附进程
    KeUnstackDetachProcess(&ks);
}

VOID DriverUnload(IN PDRIVER_OBJECT DriverObject)
{

}

NTSTATUS DriverEntry(IN PDRIVER_OBJECT DriverObject, IN PUNICODE_STRING RegistryPath)
{
    DbgPrint("hello lyshark.com \n");

    ULONG i = 0;
    PEPROCESS eproc = NULL;
    for (i = 4; i<100000000; i = i + 4)
    {
        eproc = LookupProcess((HANDLE)i);
        if (eproc != NULL)
        {
            ObDereferenceObject(eproc);
            if (strstr(PsGetProcessImageFileName(eproc), "lyshark.exe") != NULL)
            {
                EnumModule(eproc);
            }
        }
    }

    DriverObject->DriverUnload = DriverUnload;
    return STATUS_SUCCESS;
}

如上我们指定获取应用层lyshark.exe进程的模块信息,并可得到以下输出效果:

image.png

上篇文章中的代码就不再啰嗦了,这里只给出内存转存的核心代码,如下代码:

  • RtlInitUnicodeString 用于初始化转存后的名字字符串
  • ZwCreateFile 内核中创建文件到应用层
  • ZwWriteFile 将文件写出到文件
  • ZwClose 最后是关闭文件并释放堆空间

很简单只是利用了SafeCopyMemory_R3_to_R0将进程内存读取到缓冲区内,并将缓冲区写出到C盘目录下。

// 进程内存拷贝函数
// By: LyShark.com
NTSTATUS ProcessDumps(PEPROCESS pEprocess, ULONG_PTR nBase, ULONG nSize)
{
    BOOLEAN bAttach = FALSE;
    KAPC_STATE ks = { 0 };
    PVOID pBuffer = NULL;
    NTSTATUS status = STATUS_UNSUCCESSFUL;

    if (nSize == 0 || pEprocess == NULL)
    {
        return status;
    }

    pBuffer = ExAllocatePoolWithTag(PagedPool, nSize, 'lysh');
    if (!pBuffer)
    {
        return status;
    }

    memset(pBuffer, 0, nSize);

    if (pEprocess != IoGetCurrentProcess())
    {
        KeStackAttachProcess(pEprocess, &ks);
        bAttach = TRUE;
    }

    status = SafeCopyMemory_R3_to_R0(nBase, (ULONG_PTR)pBuffer, nSize);

    if (bAttach)
    {
        KeUnstackDetachProcess(&ks);
        bAttach = FALSE;
    }

    OBJECT_ATTRIBUTES object;
    IO_STATUS_BLOCK io;
    HANDLE hFile;
    UNICODE_STRING log;

    // 导出文件名称
    RtlInitUnicodeString(&log, L"\\??\\C:\\lyshark_dumps.exe");
    InitializeObjectAttributes(&object, &log, OBJ_CASE_INSENSITIVE, NULL, NULL);

    status = ZwCreateFile(&hFile,
        GENERIC_WRITE,
        &object,
        &io,
        NULL,
        FILE_ATTRIBUTE_NORMAL,
        FILE_SHARE_WRITE,
        FILE_OPEN_IF,
        FILE_SYNCHRONOUS_IO_NONALERT,
        NULL,
        0);

    if (!NT_SUCCESS(status))
    {
        DbgPrint("打开文件错误 \n");
        return STATUS_SUCCESS;
    }

    ZwWriteFile(hFile, NULL, NULL, NULL, &io, pBuffer, nSize, NULL, NULL);
    DbgPrint("写出字节数: %d \n", io.Information);
    DbgPrint("[*] LyShark.exe 已转存");
    ZwClose(hFile);

    if (pBuffer)
    {
        ExFreePoolWithTag(pBuffer, 'lysh');
        pBuffer = NULL;
    }

    return status;
}

VOID UnDriver(PDRIVER_OBJECT driver)
{
    DbgPrint(("Uninstall Driver Is OK \n"));
}

// lyshark.com
NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{
    DbgPrint("hello lyshark.com \n");

    NTSTATUS ntStatus;
    PEPROCESS pCurProcess = NULL;

    __try
    {
        ntStatus = PsLookupProcessByProcessId((HANDLE)272, &pCurProcess);
        if (NT_SUCCESS(ntStatus))
        {
            // 设置基地址以及长度
            ntStatus = ProcessDumps(pCurProcess, 0x140000000, 1024);
            ObDereferenceObject(pCurProcess);
        }
    }
    __except (1)
    {
        ntStatus = GetExceptionCode();
    }

    Driver->DriverUnload = UnDriver;
    return STATUS_SUCCESS;
}

转存后效果如下所示:

image.png

至于导出的进程无法运行只是没有修复而已(后期会讲),可以打开看看是没错的。

image.png

目录
相关文章
|
11天前
|
算法 调度 Python
探索操作系统的内核——一个简单的进程调度示例
【9月更文挑战第17天】在这篇文章中,我们将深入探讨操作系统的核心组件之一——进程调度。通过一个简化版的代码示例,我们将了解进程调度的基本概念、目的和实现方式。无论你是初学者还是有一定基础的学习者,这篇文章都将帮助你更好地理解操作系统中进程调度的原理和实践。
|
17天前
|
存储 监控
【Azure Cloud Service】在Azure云服务中收集CPU监控指标和IIS进程的DUMP方法
在使用Cloud Service服务时,发现服务的CPU占用很高,在业务请求并不大的情况下,需要直到到底是什么进程占用了大量的CPU资源,已经如何获取IIS进程(w3wp.exe)的DUMP文件?
|
1月前
|
调度 虚拟化 容器
探索操作系统的心脏:内核与进程管理
【8月更文挑战第28天】在数字世界的复杂迷宫中,操作系统扮演着关键角色。它如同一座桥梁,连接硬件与软件,确保一切顺畅运行。本文将深入剖析操作系统的核心——内核和进程管理,揭示它们如何协同工作,保障系统的稳定与高效。通过简化的比喻,我们将一探究竟,了解操作系统背后的神秘面纱。
|
1月前
|
算法 安全 调度
揭秘操作系统的心脏:内核与进程管理
【8月更文挑战第27天】在数字世界的庞大机器中,操作系统扮演着至关重要的角色。本文将深入探讨操作系统的核心组件之一——内核,以及它是如何高效地管理和调度进程的。通过浅显易懂的语言和生动的比喻,我们将一起探索这一技术领域的奥秘,并了解其对整个计算生态的影响。无论你是技术新手还是资深爱好者,这篇文章都将为你打开一扇了解操作系统深层工作机制的大门。
|
27天前
crash —— 查看进程的内核栈的内容
crash —— 查看进程的内核栈的内容
|
3月前
|
监控 Linux 应用服务中间件
探索Linux中的`ps`命令:进程监控与分析的利器
探索Linux中的`ps`命令:进程监控与分析的利器
|
2月前
|
运维 关系型数据库 MySQL
掌握taskset:优化你的Linux进程,提升系统性能
在多核处理器成为现代计算标准的今天,运维人员和性能调优人员面临着如何有效利用这些处理能力的挑战。优化进程运行的位置不仅可以提高性能,还能更好地管理和分配系统资源。 其中,taskset命令是一个强大的工具,它允许管理员将进程绑定到特定的CPU核心,减少上下文切换的开销,从而提升整体效率。
掌握taskset:优化你的Linux进程,提升系统性能
|
2月前
|
弹性计算 Linux 区块链
Linux系统CPU异常占用(minerd 、tplink等挖矿进程)
Linux系统CPU异常占用(minerd 、tplink等挖矿进程)
86 4
Linux系统CPU异常占用(minerd 、tplink等挖矿进程)
|
1月前
|
算法 Linux 调度
探索进程调度:Linux内核中的完全公平调度器
【8月更文挑战第2天】在操作系统的心脏——内核中,进程调度算法扮演着至关重要的角色。本文将深入探讨Linux内核中的完全公平调度器(Completely Fair Scheduler, CFS),一个旨在提供公平时间分配给所有进程的调度器。我们将通过代码示例,理解CFS如何管理运行队列、选择下一个运行进程以及如何对实时负载进行响应。文章将揭示CFS的设计哲学,并展示其如何在现代多任务计算环境中实现高效的资源分配。
|
2月前
|
存储 缓存 安全
【Linux】冯诺依曼体系结构与操作系统及其进程
【Linux】冯诺依曼体系结构与操作系统及其进程
146 1

相关实验场景

更多