Java服务假死后续之内存溢出

简介: 一、现象分析上篇博客说到,Java服务假死的原因是使用了Guava缓存,30分钟的有效期导致Full GC无法回收内存。经过优化后,已经不再使用Guava缓存,实时查询数据。从短期效果来看,确实解决了无法回收内存的问题,但是服务运行几天后,发现内存又逐渐被占满,Full GC后只能回收一小部分。

一、现象分析

上篇博客说到,Java服务假死的原因是使用了Guava缓存,30分钟的有效期导致Full GC无法回收内存。经过优化后,已经不再使用Guava缓存,实时查询数据。从短期效果来看,确实解决了无法回收内存的问题,但是服务运行几天后,发现内存又逐渐被占满,Full GC后只能回收一小部分。

网络异常,图片无法展示
|

从上图可以看出,一次Full GC后,老年代基本上没有回收多少内存,占比从99.86%降到99.70%。

二、原因排查

到底是什么对象占据这么大的内存,并且无法被JVM垃圾回收呢。在上一篇博客中已经移除了Guava缓存,按理说不应该有无法回收的对象了。那么,很明显这应该是代码问题导致了内存泄露,现在需要知道哪些对象无法被回收,从而定位出代码哪里有BUG。这里采用 jmap -histo:live 201349|head -10 命令打印出GC后存活的对象。

网络异常,图片无法展示
|

从上图可以看出,还是之前存在Guava缓存里面的对象占据着大部分内存,代码修改为实时查询后,每次用完数据都会从Map中剔除,按理不应该有强引用去引用这些对象。光看代码无法排查出哪里导致了内存泄露,只能将GC后的内存文件导出来进行分析。这里采用 jmap -dump:format=b,file=/data/heap.hprof 命令将内存文件导出来,用JDK自带的visualVM打开。

网络异常,图片无法展示
|

这里拿ECBug对象进行分析,从引用关系可以看出,ECBug对象被DataSetCenter引用,DataSetCenter就是实时查询数据进行存储的一个ConcurrentHashMap,但每次用完数据后都会进行remove操作,具体代码如下所示。

private List<BusinessBean> realTimeQueryBusinessModelData(IDataSetKey accessCacheDataSetKey,Set<IMapper> mappers, Set<IFilter> filters, Set<ISorter> sorters) throws DataNotFoundException, IllegalAccessException, CloneNotSupportedException, InstantiationException {
        List<BusinessBean> resultBeans = null;
        try {
            lock.lock();
            if (!dataSetCenter.containsKey(accessCacheDataSetKey)) {
                log.info("put DataSetKey into DataSetCenter,dataSetKey is {}",accessCacheDataSetKey);
                int count = businessModelQuery.count(accessCacheDataSetKey);
                if (count == 0) throw new DataNotFoundException();
                Class modelClass = businessModelCenter.getDataModelClass(accessCacheDataSetKey.getModelId());
                if (modelClass == null) {
                    throw new DataNotFoundException();
                }
                dataSetCenter.put(accessCacheDataSetKey, new DataSet(count, modelClass));
            }
            List<BusinessBean> cachedBeans = dataSetCenter.get(accessCacheDataSetKey).getData();
            resultBeans =  getModelDataInternal(accessCacheDataSetKey, businessModelQuery, mappers, filters, sorters, cachedBeans);
        }finally {
            lock.unlock();
            if(!lock.isLocked()){
                dataSetCenter.remove(accessCacheDataSetKey);
            }
        }
        return resultBeans;
    }

从代码来看,每次 dataSetCenter.put(accessCacheDataSetKey, new DataSet(count, modelClass))后,都会在finally里面调用dataSetCenter.remove(accessCacheDataSetKey)把key删除掉,这样在GC时会自动回收Value值。但是忽略了一个方法getModelDataInternal,该方法可能会递归调用
realTimeQueryBusinessModelData方法,如果存在递归调用的话,那么由于可重入锁lock还没有完成解锁,所以无法进入if(!lock.isLocked())条件语句中进行删除key的操作,这样就造成了一部分数据无法被删除,随着时间的推移,内存中的数据会越来越多。

三、故障解决

基于上述的代码分析,改造如下所示。

private List<BusinessBean> realTimeQueryBusinessModelData(IDataSetKey accessCacheDataSetKey,Set<IMapper> mappers, Set<IFilter> filters, Set<ISorter> sorters) throws DataNotFoundException, IllegalAccessException, CloneNotSupportedException, InstantiationException {
        List<BusinessBean> resultBeans = null;
        try {
            queryLock.lock();
            modelQueryLock.lock();
            if (!dataSetCenter.containsKey(accessCacheDataSetKey)) {
                log.info("put DataSetKey into DataSetCenter,dataSetKey is {}",accessCacheDataSetKey);
                int count = businessModelQuery.count(accessCacheDataSetKey);
                if (count == 0) throw new DataNotFoundException();
                Class modelClass = businessModelCenter.getDataModelClass(accessCacheDataSetKey.getModelId());
                if (modelClass == null) {
                    throw new DataNotFoundException();
                }
                dataSetCenter.put(accessCacheDataSetKey, new DataSet(count, modelClass));
            }
            List<BusinessBean> cachedBeans = dataSetCenter.get(accessCacheDataSetKey).getData();
            resultBeans =  getModelDataInternal(accessCacheDataSetKey, businessModelQuery, mappers, filters, sorters, cachedBeans);
        }finally {
            modelQueryLock.unlock();
            if(!modelQueryLock.isLocked()){
                removeDataSetKeys();
            }
            queryLock.unlock();
        }
        return resultBeans;
    }

这里当modelQueryLock可重入锁完全解锁后,调用removeDataSetKeys方法,该方法会将dataSetCenter里面的key全部删除,这样在GC时就会回收不用的数据对象。这里采用两个可重入锁的目的是,如果只用一个modelQueryLock可重入锁,那么当modelQueryLock完全解锁后,正在执行removeDataSetKeys方法时,其他线程就可以进入该方法区,发现dataSetCenter里面还没有删除完全,从而获取里面的数据,即if (!dataSetCenter.containsKey(accessCacheDataSetKey))为false,从而通过List<BusinessBean> cachedBeans = dataSetCenter.get(accessCacheDataSetKey).getData()直接获取dataSetCenter里面的数据,但是下一刻dataSetCenter里面可能已经为空。因此,采用两个可重入锁,防止出现异常。

相关文章
|
3月前
|
Java 大数据 Go
从混沌到秩序:Java共享内存模型如何通过显式约束驯服并发?
并发编程旨在混乱中建立秩序。本文对比Java共享内存模型与Golang消息传递模型,剖析显式同步与隐式因果的哲学差异,揭示happens-before等机制如何保障内存可见性与数据一致性,展现两大范式的深层分野。(238字)
117 4
|
3月前
|
存储 缓存 Java
【深入浅出】揭秘Java内存模型(JMM):并发编程的基石
本文深入解析Java内存模型(JMM),揭示synchronized与volatile的底层原理,剖析主内存与工作内存、可见性、有序性等核心概念,助你理解并发编程三大难题及Happens-Before、内存屏障等解决方案,掌握多线程编程基石。
|
3月前
|
JSON Java 数据格式
java调用服务报错400
java调用服务报错400
109 6
java调用服务报错400
|
3月前
|
JSON Java 数据格式
java调用服务报错415 Content type ‘application/octet-stream‘ not supported
java调用服务报错415 Content type ‘application/octet-stream‘ not supported
273 6
|
4月前
|
安全 Java 应用服务中间件
Spring Boot + Java 21:内存减少 60%,启动速度提高 30% — 零代码
通过调整三个JVM和Spring Boot配置开关,无需重写代码即可显著优化Java应用性能:内存减少60%,启动速度提升30%。适用于所有在JVM上运行API的生产团队,低成本实现高效能。
555 3
|
4月前
|
缓存 监控 Kubernetes
Java虚拟机内存溢出(Java Heap Space)问题处理方案
综上所述, 解决Java Heap Space溢出需从多角度综合施策; 包括但不限于配置调整、代码审查与优化以及系统设计层面改进; 同样也不能忽视运行期监控与预警设置之重要性; 及早发现潜在风险点并采取相应补救手段至关重要.
718 17
|
5月前
|
存储 监控 算法
Java垃圾回收机制(GC)与内存模型
本文主要讲述JVM的内存模型和基本调优机制。
|
5月前
|
存储 缓存 Java
Java数组全解析:一维、多维与内存模型
本文深入解析Java数组的内存布局与操作技巧,涵盖一维及多维数组的声明、初始化、内存模型,以及数组常见陷阱和性能优化。通过图文结合的方式帮助开发者彻底理解数组本质,并提供Arrays工具类的实用方法与面试高频问题解析,助你掌握数组核心知识,避免常见错误。
|
5月前
|
存储 数据采集 搜索推荐
Java 大视界 -- Java 大数据在智慧文旅旅游景区游客情感分析与服务改进中的应用实践(226)
本篇文章探讨了 Java 大数据在智慧文旅景区中的创新应用,重点分析了如何通过数据采集、情感分析与可视化等技术,挖掘游客情感需求,进而优化景区服务。文章结合实际案例,展示了 Java 在数据处理与智能推荐等方面的强大能力,为文旅行业的智慧化升级提供了可行路径。
Java 大视界 -- Java 大数据在智慧文旅旅游景区游客情感分析与服务改进中的应用实践(226)
|
5月前
|
边缘计算 算法 Java
Java 绿色计算与性能优化:从内存管理到能耗降低的全方位优化策略与实践技巧
本文探讨了Java绿色计算与性能优化的技术方案和应用实例。文章从JVM调优(包括垃圾回收器选择、内存管理和并发优化)、代码优化(数据结构选择、对象创建和I/O操作优化)等方面提出优化策略,并结合电商平台、社交平台和智能工厂的实际案例,展示了通过Java新特性提升性能、降低能耗的显著效果。最终指出,综合运用这些优化方法不仅能提高系统性能,还能实现绿色计算目标,为企业节省成本并符合环保要求。
230 0