纯原创,略带点科技艺术气息的目标检测框

简介: 纯原创,略带点科技艺术气息的目标检测框

🔱前言


       如果说作为一名程序员,我要求我自己要不断的求证,那么同时作为一名热爱艺术的人,我则无法忍受主流的那种“丑陋”目标检测框(下图),所以这篇文章也就应用而生了。


1dc618a0ed9580ce8bfa6facb208c08f.png


🔱检测框展览


1dc618a0ed9580ce8bfa6facb208c08f.png



5d4c6812c8535adbb050f4ddf2e1bce8.png

46a9d80a6e05e4e3b19d57a0ee70bcdf.png


🔱在实际应用中效果的展览


📍Face


b001cd2dd849a60e17405f7ed5f145b8.jpeg


📍Body


66ba272a0bfc97be54a5fa679e3d5482.png


🔱Code柜


📍magic_bbox.py


# -*- coding: UTF-8 -*-
"""
@Time    : 2022-9-15
@Author  : 江子良
@Email   : 2642898145@qq.com
"""
import cv2
import numpy as np
class Magic_Bbox(object):
    def __init__(self, color=(255, 255, 0), threasould=25):
        self.color = color
        self.threasould = threasould
        self.out_img = np.array([])
    def draw(self, old_image, b, draw_type):
        if draw_type == '0':
            cv2.rectangle(old_image, (b[0], b[1]), (b[2], b[3]), self.color, 1)
            b0_, b1_, b2_, b3_ = self.threasould, self.threasould, self.threasould, self.threasould
            # 左上
            cv2.line(old_image, (b[0], b[1]), (b[0], b[1] + b1_), self.color, 4, 4)
            cv2.line(old_image, (b[0], b[1]), (b[0] + b0_, b[1]), self.color, 4, 4)
            # 右下
            cv2.line(old_image, (b[2], b[3]), (b[2], b[3] - b3_), self.color, 4, 4)
            cv2.line(old_image, (b[2], b[3]), (b[2] - b2_, b[3]), self.color, 4, 4)
            # 左下
            cv2.line(old_image, (b[0], b[3]), (b[0], b[3] - b3_), self.color, 4, 4)
            cv2.line(old_image, (b[0], b[3]), (b[0] + b0_, b[3]), self.color, 4, 4)
            # 右上
            cv2.line(old_image, (b[2], b[1]), (b[2], b[1] + b1_), self.color, 4, 4)
            cv2.line(old_image, (b[2], b[1]), (b[2] - b2_, b[1]), self.color, 4, 4)
        elif draw_type == '1':
            cv2.rectangle(old_image, (b[0], b[1]), (b[2], b[3]), self.color, 1)
            b0_, b1_, b2_, b3_ = 25, 25, 25, 25
            temp = 10
            # 左上
            cv2.line(old_image, (b[0] - temp, b[1] - temp), (b[0], b[1] + b1_), self.color, 4, 4)
            cv2.line(old_image, (b[0] - temp, b[1] - temp), (b[0] + b0_, b[1]), self.color, 4, 4)
            # 右下
            cv2.line(old_image, (b[2] + temp, b[3] + temp), (b[2], b[3] - b3_), self.color, 4, 4)
            cv2.line(old_image, (b[2] + temp, b[3] + temp), (b[2] - b2_, b[3]), self.color, 4, 4)
            # 左下
            cv2.line(old_image, (b[0] - temp, b[3] + temp), (b[0], b[3] - b3_), self.color, 4, 4)
            cv2.line(old_image, (b[0] - temp, b[3] + temp), (b[0] + b0_, b[3]), self.color, 4, 4)
            # 右上
            cv2.line(old_image, (b[2] + temp, b[1] - temp), (b[2], b[1] + b1_), self.color, 4, 4)
            cv2.line(old_image, (b[2] + temp, b[1] - temp), (b[2] - b2_, b[1]), self.color, 4, 4)
        elif draw_type == '2':
            cv2.rectangle(old_image, (b[0], b[1]), (b[2], b[3]), self.color, 1)
            b0_, b1_, b2_, b3_ = 25, 25, 25, 25
            temp = 10
            # 左上
            cv2.line(old_image, (b[0] - temp, b[1] - temp), (b[0] - temp, b[1] + b1_ - temp), self.color, 4, 4)
            cv2.line(old_image, (b[0] - temp, b[1] - temp), (b[0] - temp + b0_, b[1] - temp), self.color, 4, 4)
            # 右下
            cv2.line(old_image, (b[2] + temp, b[3] + temp), (b[2] + temp, b[3] - b3_ + temp), self.color, 4, 4)
            cv2.line(old_image, (b[2] + temp, b[3] + temp), (b[2] + temp - b2_, b[3] + temp), self.color, 4, 4)
            # 左下
            cv2.line(old_image, (b[0] - temp, b[3] + temp), (b[0] - temp, b[3] - b3_ + temp), self.color, 4, 4)
            cv2.line(old_image, (b[0] - temp, b[3] + temp), (b[0] - temp + b0_, b[3] + temp), self.color, 4, 4)
            # 右上
            cv2.line(old_image, (b[2] + temp, b[1] - temp), (b[2] + temp, b[1] + b1_ - temp), self.color, 4, 4)
            cv2.line(old_image, (b[2] + temp, b[1] - temp), (b[2] + temp - b2_, b[1] - temp), self.color, 4, 4)
        return old_image
    def show(self, img):
        cv2.imshow('fame', img)
        cv2.waitKey(0)


📍demo.py


@Time    : 2022-9-15
@Author  : 江子良
@Email   : 2642898145@qq.com
@param: img | 这个参数是要传入准备被作画的图片
@param:bbox| 这个参数是要传入准备作画的目标框位置 格式:(xmin,ymin,xmax,ymax)
@pararm:type| 这个参数是一一对应上面3种不同的目标检测框
@pararm:color| 请根据RGB表自行设置哦!
"""

RGB颜色对照表戳这里~

http://t.csdn.cn/9z0SF

How to use?


from magic_bbox import Magic_Bbox
import numpy as np
import cv2
if __name__ == "__main__":
    img = np.zeros((320, 320, 3), np.uint8)  # 生成一个空灰度图像
    bbox = (60, 60, 260, 260)
    color = (255,255,0)
    '''
    type: 0 | 1 | 2
    '''
    mb = Magic_Bbox(color=color)
    img = mb.draw(img, bbox, '1')
    mb.show(img)

完毕!


如果大家觉得有用的话,欢迎三连喔~


相关文章
|
4月前
|
人工智能 开发工具 计算机视觉
AI计算机视觉笔记三十:yolov8_obb旋转框训练
本文介绍了如何使用AUTODL环境搭建YOLOv8-obb的训练流程。首先创建虚拟环境并激活,然后通过指定清华源安装ultralytics库。接着下载YOLOv8源码,并使用指定命令开始训练,过程中可能会下载yolov8n.pt文件。训练完成后,可使用相应命令进行预测测试。
|
4月前
|
人工智能 并行计算 测试技术
AI计算机视觉笔记三十一:基于UNetMultiLane的多车道线等识别
该项目基于开源数据集 VIL100 实现了 UNetMultiLane,用于多车道线及车道线类型的识别。数据集中标注了六个车道的车道线及其类型。项目详细记录了从环境搭建到模型训练与测试的全过程,并提供了在 CPU 上进行训练和 ONNX 转换的代码示例。训练过程约需 4 小时完成 50 个 epoch。此外,还实现了视频检测功能,可在视频中实时识别车道线及其类型。
|
8月前
|
机器学习/深度学习 自然语言处理 计算机视觉
CVPR 2024:生成不了光线极强的图片?微信视觉团队有效解决扩散模型奇点问题
【4月更文挑战第14天】中山大学和微信团队的研究者提出 SingDiffusion,一种解决扩散模型在处理极端亮度图像时的平均亮度问题的新方法。SingDiffusion 可无缝集成到预训练模型中,无需额外训练,通过处理 t=1 时间步长的采样问题,改善了图像生成的亮度偏差。在 COCO 数据集上的实验显示,相较于现有模型,SingDiffusion 在 FID 和 CLIP 分数上表现更优。
90 7
CVPR 2024:生成不了光线极强的图片?微信视觉团队有效解决扩散模型奇点问题
|
机器学习/深度学习 算法 决策智能
计算机视觉实战(十二)全景图像拼接(附完整代码)
计算机视觉实战(十二)全景图像拼接(附完整代码)
446 0
|
机器学习/深度学习 自动驾驶 前端开发
ICRA 2022杰出论文:把自动驾驶2D图像转成鸟瞰图,模型识别准确率立增15%
ICRA 2022杰出论文:把自动驾驶2D图像转成鸟瞰图,模型识别准确率立增15%
146 0
|
机器学习/深度学习 编解码 并行计算
现代目标检测故事(三)
现代目标检测故事
217 0
|
机器学习/深度学习 编解码 算法
现代目标检测故事(一)
现代目标检测故事
121 0
|
机器学习/深度学习 编解码 自然语言处理
现代目标检测故事(二)
现代目标检测故事
286 0
|
传感器 文字识别 监控
【技术分享】计算机视觉常见的十种图像标注方法
【技术分享】计算机视觉常见的十种图像标注方法
587 0
【技术分享】计算机视觉常见的十种图像标注方法
|
机器学习/深度学习 人工智能 监控
视频目标跟踪研究背景介绍
视频目标跟踪是计算机视觉领域重要的研究内容,主要研究在视频流或者图像序列中定位其中感兴趣的物体。视频目标跟踪在视频监控、无人驾驶、精确制导等领域中具有广泛的应用,因此,全面地综述视频目标跟踪算法具有重要的意义。
421 0