Java多线程 线程池的生命周期及运行状态

简介: Java多线程 线程池的生命周期及运行状态

一、说明


线程池的生命周期


  • 线程池的状态runState和工作线程数量workerCount共同保存在 AtomicInteger 类型的控制变量 ctl


  • ctl高三位保存运行状态(23=8>5),低29位保存工作线程的数量(229-1)


  // 初始运行状态为RUNNING,线程数为0
    private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
    // COUNT_BITS: 29
    private static final int COUNT_BITS = Integer.SIZE - 3;
    // CAPACITY: 十进制: 536870911 二进制: 00011111111111111111111111111111
    private static final int CAPACITY   = (1 << COUNT_BITS) - 1;
    // runState is stored in the high-order bits 
    // RUNNING: 十进制:-536870912  二进制:11100000000000000000000000000000
    private static final int RUNNING    = -1 << COUNT_BITS;
    // SHUTDOWN: 十进制:0  二进制:0
    private static final int SHUTDOWN   =  0 << COUNT_BITS;
    // STOP: 十进制:536870912  二进制:00100000000000000000000000000000
    private static final int STOP       =  1 << COUNT_BITS;
    // TIDYING: 十进制:1073741824  二进制:01000000000000000000000000000000
    private static final int TIDYING    =  2 << COUNT_BITS;
    // TERMINATED: 十进制:1610612736  二进制:01100000000000000000000000000000
    private static final int TERMINATED =  3 << COUNT_BITS;
    // Packing and unpacking ctl 打包和解包ctl
    // 获取线程池当前状态,CAPACITY取反,高三位都是1,低29位都是0,和ctl进行与运算,获得runState变量
    private static int runStateOf(int c)     { return c & ~CAPACITY; }
    // CAPACITY高三位都是0,低29位都是0,和ctl进行与运算获得workerCount变量
    private static int workerCountOf(int c)  { return c & CAPACITY; }
    // 初始化ctl变量,runState和workerCount进行或运算后共同存储在一个变量中
    private static int ctlOf(int rs, int wc) { return rs | wc; }


  • RUNNING 接收新的任务,并且可执行队列里的任务


  • SHUTDOWN 停止接收新任务,但可执行队列里的任务


  • STOP 可执行队列里的任务,不执行队列里的任务,中断正在执行的任务


  • TIDYING 所有任务都已终止,线程数为0,当线程池变为TIDYING状态时,会执行钩子函数terminated(),钩子方法是指使用一个抽象类实现接口,
    一个抽象类实现这个接口,需要的方法设置为abstract,其它设置为空方法


  • TERMINATED 终止状态,表示线程池已关闭,已经执行完terminated()钩子方法


判断当前线程池运行状态


  // 判断线程池当前运行状态是否小于给定值
    private static boolean runStateLessThan(int c, int s) {
        return c < s;
    }
  // 判断线程池当前运行状态是否大于等于给定值
    private static boolean runStateAtLeast(int c, int s) {
        return c >= s;
    }
  // 判断线程池是否处于RUNNING状态
    private static boolean isRunning(int c) {
        return c < SHUTDOWN;
    }
   // 判断线程池是否处于SHUTDOWN状态
    public boolean isShutdown() {
        return ! isRunning(ctl.get());
    }
   // 判断线程池是否处于TERMINATING状态
    public boolean isTerminating() {
        int c = ctl.get();
        return ! isRunning(c) && runStateLessThan(c, TERMINATED);
    }
   // 判断线程池是否处于TERMINATED状态
    public boolean isTerminated() {
        return runStateAtLeast(ctl.get(), TERMINATED);
    }


运行状态转换关系



二、理解


RUNNING


接收新的任务,并且可执行队列里的任务


  // 初始运行状态为RUNNING,线程数为0
    private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));


SHUTDOWN


shutdown()方法将线程池状态转换为SHUTDOWN,停止接收新任务,但可执行队列里的任务


public void shutdown() {
    // 上锁确保只有一个线程执行此操作
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        // 检查是否有权限关闭线程池以和中断线程
        checkShutdownAccess();
        // 将线程池状态设置为SHUTDOWN
        advanceRunState(SHUTDOWN);
        // 中断所有空闲线程
        interruptIdleWorkers();
        // 用于取消延时任务
        onShutdown(); // hook for ScheduledThreadPoolExecutor
    } finally {
        mainLock.unlock();
    }
    // 将线程池置为TERMINATED状态
    tryTerminate();
}


    private void checkShutdownAccess() {
        // 检查是否有安全管理器,确保调用者有权关闭线程
        SecurityManager security = System.getSecurityManager();
        if (security != null) {
            security.checkPermission(shutdownPerm);
            // 上锁确保只有一个线程执行此操作
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
           // 对工作的线程做安全权限检查
                for (Worker w : workers)
                    security.checkAccess(w.thread);
            } finally {
                mainLock.unlock();
            }
        }
    }


    private void advanceRunState(int targetState) {
        // assert targetState == SHUTDOWN || targetState == STOP;
        // CAS 自旋操作,死循环将线程池运行状态设置为目标值
        for (;;) {
            // 获取AtomicInteger 类型的控制变量 ctl 
            int c = ctl.get();
            // 判断当前线程池的状态值是否大于目标值
            if (runStateAtLeast(c, targetState) ||\
            // 将线程池运行状态设置为目标值,成功的话会返回true,失败则返回false
                ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))
                break;
        }
    }


  // 中断所有空闲线程
    private void interruptIdleWorkers() {
        interruptIdleWorkers(false);
    }


  // 如果参数为false,中断所有空闲线程,如果为true,则只中断一个空闲线程
    private void interruptIdleWorkers(boolean onlyOne) {
        // 上锁确保只有一个线程执行此操作
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            // 检查所有的工作线程是否被中断
            for (Worker w : workers) {
                Thread t = w.thread;
                // 如果没有被中断,并且工作线程获得了锁,则执行中断方法,并释放线程锁
                // 成功则返回true,表示处于无锁状态的worker(state为0)为空闲线程
                // 失败则返回false,表示处于锁定状态的worker(state为1)为工作线程,
                if (!t.isInterrupted() && w.tryLock()) {
                    try {
                        t.interrupt();
                    } catch (SecurityException ignore) {
                    } finally {
                        w.unlock();
                    }
                }
                // 如果为true,表示只中断一个空闲线程,退出循环,适用于用tryTerminate()方法
                if (onlyOne)
                    break;
            }
        } finally {
            mainLock.unlock();
        }
    }


STOP


shutdownNow()方法将线程池状态转换为STOP,同时中断所有线程,停止接收新任务,不执行队列里的任务,中断正在执行的任务


public List<Runnable> shutdownNow() {
    List<Runnable> tasks;
    // 上锁确保只有一个线程执行此操作
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        // 检查是否有权限关闭线程池以和中断线程
        checkShutdownAccess();
        // 将线程池运行状态置为STOP
        advanceRunState(STOP);
        // 中断所有线程
        interruptWorkers();
        // 将未执行的任务移入列表中
        tasks = drainQueue();
    } finally {
        mainLock.unlock();
    }
    // 将线程池置为TERMINATED状态
    tryTerminate();
    return tasks;
}


TIDYING


所有任务都已终止,线程数为0,线程池变为TIDYING状态,会执行钩子函数terminated(),钩子方法是指使用一个抽象类实现接口,一个抽象类实现这个接口,需要的方法设置为abstract,其它设置为空方法


//  每个工作线程的终结都会调用tryTerminate()方法
final void tryTerminate() {
    for (;;) {
        int c = ctl.get();
        // 判断线程池的状态,下面几种情况则直接返回
        // 1. 线程池处于RUNNING状态
        // 2. 线程池处于TIDYING或者TERMINATED状态,意味着已经走到了下面的步骤,线程池即将终结
        // 3. 线程池处于SHUTDOWN状态且任务队列不为空
        if (isRunning(c) ||
            runStateAtLeast(c, TIDYING) ||
            (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
            return;
        // 到这里说明当前线程池除了线程数不为0,其他条件都已经满足关闭要求
        // 如果工作线程数量不为0,则尝试中断工作线程集合中的一个空闲线程
        if (workerCountOf(c) != 0) {
            interruptIdleWorkers(ONLY_ONE);
            return;
        }
        // 到这里说明线程池满足所有关闭条件的要求,接下来将线程池运行状态置为TERMINATED
      // 上锁确保只有一个线程执行此操作
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            // CAS设置线程池运行状态为TIDYING
            if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
                try {
                    // 执行terminated()钩子方法,用于终止线程池
                    terminated();
                } finally {
            // 将线程池运行状态置为TERMINATED,且线程数为0
                    ctl.set(ctlOf(TERMINATED, 0));
                    // 唤醒阻塞在termination条件的所有线程
                    termination.signalAll();
                }
                return;
            }
        } finally {
            mainLock.unlock();
        }
        // else retry on failed CAS
    }
}


termination实现 Condition 接口,用于实现线程阻塞和唤醒


private final ReentrantLock mainLock = new ReentrantLock();
private final Condition termination = mainLock.newCondition();


TERMINATED


执行完terminated()钩子方法,线程池已终止,变为TERMINATED状态


三、实现


使用ThreadPoolExecutor自定义线程池


详见:Java多线程 ThreadPoolExecutor自定义线程池

目录
相关文章
|
4天前
|
Java 程序员 开发者
Java社招面试题:一个线程运行时发生异常会怎样?
大家好,我是小米。今天分享一个经典的 Java 面试题:线程运行时发生异常,程序会怎样处理?此问题考察 Java 线程和异常处理机制的理解。线程发生异常,默认会导致线程终止,但可以通过 try-catch 捕获并处理,避免影响其他线程。未捕获的异常可通过 Thread.UncaughtExceptionHandler 处理。线程池中的异常会被自动处理,不影响任务执行。希望这篇文章能帮助你深入理解 Java 线程异常处理机制,为面试做好准备。如果你觉得有帮助,欢迎收藏、转发!
45 14
|
5天前
|
Python
python3多线程中使用线程睡眠
本文详细介绍了Python3多线程编程中使用线程睡眠的基本方法和应用场景。通过 `time.sleep()`函数,可以使线程暂停执行一段指定的时间,从而控制线程的执行节奏。通过实际示例演示了如何在多线程中使用线程睡眠来实现计数器和下载器功能。希望本文能帮助您更好地理解和应用Python多线程编程,提高程序的并发能力和执行效率。
34 20
|
7天前
|
安全 Java 程序员
Java 面试必问!线程构造方法和静态块的执行线程到底是谁?
大家好,我是小米。今天聊聊Java多线程面试题:线程类的构造方法和静态块是由哪个线程调用的?构造方法由创建线程实例的主线程调用,静态块在类加载时由主线程调用。理解这些细节有助于掌握Java多线程机制。下期再见! 简介: 本文通过一个常见的Java多线程面试题,详细讲解了线程类的构造方法和静态块是由哪个线程调用的。构造方法由创建线程实例的主线程调用,静态块在类加载时由主线程调用。理解这些细节对掌握Java多线程编程至关重要。
37 13
|
8天前
|
安全 Java 开发者
【JAVA】封装多线程原理
Java 中的多线程封装旨在简化使用、提高安全性和增强可维护性。通过抽象和隐藏底层细节,提供简洁接口。常见封装方式包括基于 Runnable 和 Callable 接口的任务封装,以及线程池的封装。Runnable 适用于无返回值任务,Callable 支持有返回值任务。线程池(如 ExecutorService)则用于管理和复用线程,减少性能开销。示例代码展示了如何实现这些封装,使多线程编程更加高效和安全。
|
11天前
|
安全 Java C#
Unity多线程使用(线程池)
在C#中使用线程池需引用`System.Threading`。创建单个线程时,务必在Unity程序停止前关闭线程(如使用`Thread.Abort()`),否则可能导致崩溃。示例代码展示了如何创建和管理线程,确保在线程中执行任务并在主线程中处理结果。完整代码包括线程池队列、主线程检查及线程安全的操作队列管理,确保多线程操作的稳定性和安全性。
|
1月前
|
缓存 安全 算法
Java 多线程 面试题
Java 多线程 相关基础面试题
|
6月前
|
存储 安全 Java
解锁Java并发编程奥秘:深入剖析Synchronized关键字的同步机制与实现原理,让多线程安全如磐石般稳固!
【8月更文挑战第4天】Java并发编程中,Synchronized关键字是确保多线程环境下数据一致性与线程安全的基础机制。它可通过修饰实例方法、静态方法或代码块来控制对共享资源的独占访问。Synchronized基于Java对象头中的监视器锁实现,通过MonitorEnter/MonitorExit指令管理锁的获取与释放。示例展示了如何使用Synchronized修饰方法以实现线程间的同步,避免数据竞争。掌握其原理对编写高效安全的多线程程序极为关键。
86 1
|
7月前
|
安全 Java 开发者
Java并发编程中的线程安全问题及解决方案探讨
在Java编程中,特别是在并发编程领域,线程安全问题是开发过程中常见且关键的挑战。本文将深入探讨Java中的线程安全性,分析常见的线程安全问题,并介绍相应的解决方案,帮助开发者更好地理解和应对并发环境下的挑战。【7月更文挑战第3天】
126 0
|
8月前
|
安全 Java 开发者
Java并发编程中的线程安全策略
在现代软件开发中,Java语言的并发编程特性使得多线程应用成为可能。然而,随着线程数量的增加,如何确保数据的一致性和系统的稳定性成为开发者面临的挑战。本文将探讨Java并发编程中实现线程安全的几种策略,包括同步机制、volatile关键字的使用、以及java.util.concurrent包提供的工具类,旨在为Java开发者提供一系列实用的方法来应对并发问题。
64 0
|
9月前
|
存储 安全 Java
深入理解Java并发编程:线程安全与锁机制
【5月更文挑战第31天】在Java并发编程中,线程安全和锁机制是两个核心概念。本文将深入探讨这两个概念,包括它们的定义、实现方式以及在实际开发中的应用。通过对线程安全和锁机制的深入理解,可以帮助我们更好地解决并发编程中的问题,提高程序的性能和稳定性。

热门文章

最新文章