河北稳控科技_社区达人页

个人头像照片
河北稳控科技
已加入开发者社区942

勋章 更多

个人头像照片
专家博主
专家博主
个人头像照片
星级博主
星级博主
个人头像照片
技术博主
技术博主
个人头像照片
一代宗师
一代宗师

成就

已发布1529篇文章
805条评论
已回答20个问题
0条评论
已发布0个视频
github地址

技术能力

兴趣领域
擅长领域
  • Java
    中级

    能力说明:

    掌握封装、继承和多态设计Java类的方法,能够设计较复杂的Java类结构;能够使用泛型与集合的概念与方法,创建泛型类,使用ArrayList,TreeSet,TreeMap等对象掌握Java I/O原理从控制台读取和写入数据,能够使用BufferedReader,BufferedWriter文件创建输出、输入对象。

技术认证

暂时未有相关云产品技术能力~

从事安全监测设备研发、岩土力学计算、地质体变形与破坏模拟

暂无精选文章
暂无更多信息

2022年11月

  • 11.03 10:23:30
    发表了文章 2022-11-03 10:23:30

    如何使用手持VH501TC采集读数仪

    屏幕完成传感实时数据、信号质量、运行状态、参数设置、历史数据等信息显示。VH501TC 有两个主显示窗口,分别为实时数据窗口和历史数据窗口,见下图。 实时数据窗口分为三个区域,分别为顶部的标题栏,左侧的主测数据显示区和右侧、底部的参数状态区。历史数据窗口以表格形式显示了已保存的数据。窗口切换以及窗口内图标、文字的说明,在后续章节还会详细介绍。
  • 11.03 09:42:10
    发表了文章 2022-11-03 09:42:10

    DFP 数据转发协议应用实例 4.修改网络中指定设备的参数

    稳控科技编写的一套数据转发规则, 取自“自由转发协议 FFP(Free Forward Protocol)” ,或者 DFP(DoubleF Protocol), DF 也可以理解为 Datas Forward(数据转发)的缩写。DF 协议是与硬件接口无关的数据链路层协议,规定了数据流如何在不同设备之间、不同接口之间的传输方向。 DF 协议一般用于延长数字接口的传输距离(数据中继),它与硬件接口类型无关,可以基于 UART、 LoRA、TCP 等异步数据传输介质。
  • 11.02 13:41:22
    发表了文章 2022-11-02 13:41:22

    手持振弦采集仪VH501TC对智能振弦传感器的激励信号

    采集仪对振弦传感器激励:也称为“激振”,是振弦类传感器频率数据获取的必须过程,仅当传感器收 到合适的激励信号后才能产生自振,而仅当振弦传感器产生自振后才能输出频率信号,进一步的,读数电路会检测并读取振弦传感器的自振信号,才能通过计算得到 振动频率值。振弦传感器的激励信号(能够使传感器产生自振的外部信号)一般分 为两类,一类为高压短促脉冲,一类为特定频率的多组连续低压脉冲信号。
  • 11.02 13:38:56
    发表了文章 2022-11-02 13:38:56

    手持采集仪VH501TC如何连接各种传感器

    4线制电子标签传感器 DSensor DSensor 专门研发的包含有传感器型号和计算参数的一体化传感器,可实时获取传感器型号、类型、量程、初始频率、计算参数等信息,当读数仪检测到电子标签传感器接入时,界面自动切换,显示传感器的基本信息和计算结果,计算结果以物理量形式显示。 红黑线连接振弦线圈,黄色连接电子标签正极,蓝色连接电子标签负极。
  • 11.02 09:45:00
    发表了文章 2022-11-02 09:45:00

    振弦采集模块VM系列几个应用电路

    最新固件增加的电子标签,就是智能振弦传感器识别模块,有了这个电子标签模块,所有的振弦采集仪都直接可以读取传感器的所有信息(传感器型号、量程、K值、编号等,如厂商 品牌: 型号: 类别:应变计 量程:0.000-1500.000uE 编号:206012 线长:2M 线圈:1 初始频率:2102Hz 传感器实时数据:信号幅值00%信号质值00% 数值-18.19uE物理量直接算出, 频率2092.1 频模4376.93 实时 温度 25.2'C 等),再也不用担心传感器上面的纸质标签丢失损毁等,再多的传感器,直接就可以读取出来编码分类。用上了就再也回不去了,实在是太方便了。
  • 11.01 13:53:57
    发表了文章 2022-11-01 13:53:57

    智能振弦传感器无线采集仪 接口定义-传感器接口

    传感器接口上有两排8组接口,最高支持32通道传感器连接。 连接振弦传感器:以其中一组为例,1 V+ 振弦线圈正极,2 V-振弦线圈负极,3 T+振弦温度正极,4 T-振弦温度负极(传感器厂家振弦温度一般不分正负,但建议区分正负极连接更好)5 连接大地。 当设备型号振弦传感器接入数量大于 16 时, T+和 T-用于连接振弦线圈(不再用于测量温度)。
  • 11.01 13:52:04
    发表了文章 2022-11-01 13:52:04

    多通道智能振弦传感器无线采集仪的采集数据发送方式

    每次设备启动后会将采集到的传感器数据进行内部存储,并在设置好的时间间隔将数据发送出去,通过修改“数据发送方式”参数,监测数据可由数据接口输出也可经由无线网络发送。 在发送监测数据时,可通过修改“数据包协议”参数来设置所发送的数据包的样式。
  • 11.01 10:19:04
    发表了文章 2022-11-01 10:19:04

    振弦采集模块读取传感器频率值的问题

    振弦传感器中钢弦的振动频率与钢弦的振动幅度有关,振动幅度越大时频率越高(可能会偏差1~2Hz),所以在传感器使用过程中,应使用相同的激励方法、激励电压才能保证不同时间测读数据的可比性。

2022年10月

  • 10.31 14:53:28
    发表了文章 2022-10-31 14:53:28

    无线振弦采集仪计算机参数配置工具

    参数配置工具 SETP 是专门为 VS 系列多通道振弦采发仪开发的软件程序,可完成设备内部所有参数的读取和修改工作,也可当做简单的通道数据读取工具来使用。
  • 10.31 14:50:08
    发表了文章 2022-10-31 14:50:08

    VS10X无线混合信号采集仪的一般常见问题

    1 无法开机 ( 1)检查电源连接是否正确,电压范围应为 DC10~24V,输出能力不低于 2A, 正负极连接正确。若电池极性接反,即便未进行过开机操作也会导致设备永久性损坏。 ( 2)若使用电池供电,则应在保持开机按键按下状态时测量电池电压是否过低。 ( 3)检查钮扣电池电压,或者更换新的电池。
  • 10.31 11:26:00
    发表了文章 2022-10-31 11:26:00

    VM系列振弦采集模块如何更新固件获取更多功能

    最新固件增加的电子标签,就是智能传感器识别模块,有了这个电子标签,所有的振弦采集仪都直接可以读取传感器的所有信息(传感器型号、量程、K值、编号等,如厂商 品牌: 型号: 类别:应变计 量程:0.000-1500.000uE 编号:206012 线长:2M 线圈:1 初始频率:2102Hz 传感器实时数据:信号幅值00%信号质值00% 数值-18.19uE物理量直接算出, 频率2092.1 频模4376.93 实时 温度 25.2'C 等),再也不用担心传感器上面的纸质标签丢失损毁等,再多的传感器,直接就可以读取出来。用上了就再也回不去了,实在是太方便了。
  • 10.28 13:59:05
    发表了文章 2022-10-28 13:59:05

    智能振弦传感器的电子标签与传统传感器的纸质标签区别

    电子标签专用读数模块TR01:可以读取振弦传感器内置的两线制电子标签,获取传感器数字信息(实时数据参考:传感器基本信息
  • 10.28 11:14:11
    发表了文章 2022-10-28 11:14:11

    智能振弦传感器工程监测人人都爱

    振弦传感器的历史堪称古老,历经一百年仍经久不衰,目前仍是各种传感器的主流支撑技术。以下从一篇生动的文章开始介绍振弦传感器的前世今生,这篇文章是是振弦传感器发明人阿明•沃斯(Armin Wirth)后代约翰内斯(Johannes Wirth)发表于互联网的。
  • 10.28 09:45:27
    发表了文章 2022-10-28 09:45:27

    DFP 数据转发协议应用实例 4.修改网络中指定设备的参数

    DFP 是什么? 稳控科技编写的一套数据转发规则, 取自“自由转发协议 FFP(Free Forward Protocol)” ,或者 DFP(DoubleF Protocol), DF 也可以理解为 Datas Forward(数据转发)的缩写。DF 协议是与硬件接口无关的数据链路层协议,规定了数据流如何在不同设备之间、不同接口之间的传输方向。
  • 10.27 10:19:45
    发表了文章 2022-10-27 10:19:45

    预防山体滑坡安全监测系统

    滑坡泥石流是地质灾害中的重要组成部分,我国地质和地理环境复杂,气候条件时空差异大,地质灾害种类动、分布广、危害大,是世界上地质灾害最严重的国家之一。河北稳控科技充分利用在滑坡监测方面的技术积累,建立了一套科学完善的滑坡监测预警平台,实现了滑坡防治管理的科学化、信息化、标准化和可视化。为防灾减灾决策提供科学依据。
  • 10.27 10:01:28
    发表了文章 2022-10-27 10:01:28

    VM系列振弦采集读取模块激励方法

    什么是振弦传感器采集读数模块:指针对振弦传感器的特性而设计的传感器激励、读数模块。具有集成度高、功能模块化、数字接口的一系列特性,能完成振弦 传感器的激励、信号检测、数据处理、质量评估等专用针对性功能,进行传感器频率和温度物理量模数转换,进而通过数字接口实现数据交互。振弦传感器读数模块是振弦传感器与数字化、信息化之间的核心转换单元。
  • 10.27 09:58:51
    发表了文章 2022-10-27 09:58:51

    振弦采集模块(振弦采集仪核心)运行状态

    在模块正常运行时 RTS 管脚输出逻辑 1 表示模块“ 正忙”, 输出逻辑 0 表示模块“ 空闲” ,详见“3.10 振弦传感器测量流程” 。模块“ 正忙” 是指模块正在对振弦传感器进行读数操作,特别的,本模块具有传感器是否连接的检测功能, 默认情况下仅当检测到有效的传感器接入时才会发起一次读数过程,而未检测到传感器连接时, 模块会继续不断检测,此时 RTS 管脚持续输出 10Hz 的脉冲方波, 这种快速的“忙” 与“ 不忙” 两个状态间切换可以理解为“ 正在搜索传感器” 。
  • 10.26 11:09:28
    发表了文章 2022-10-26 11:09:28

    振弦采集仪的四种工作模式

    VTN4有四种工作模式,实时在线、定时开机和手动开机。三种工作模式均通过拨码开关进行设置。 上电自启模式:在这一模式下,只要外接了电源,VTN 一直处于开机状态,永不关机。VTN 会在参数预定的时间间隔自动存储数据、发送数据。
  • 10.26 11:02:55
    发表了文章 2022-10-26 11:02:55

    振弦采集仪模拟通道值和振弦传感器温度通道值修正

    模拟通道是指每组端子中的编号为 2 的接线端子(详见“接口定义”) 采集到的信号, 设备出厂时已经在硬件上配置为了电压、 电流、 电阻、 NTC 温度传感器中的任意一种。 若这些通道采集到的数据存在误差,可使用下述指令进行修正。
  • 10.26 09:56:35
    发表了文章 2022-10-26 09:56:35

    振弦采集模块(振弦采集仪核心)电源接口详细情况

    建议靠近电源管脚( VDD 尤其重要) 使用一个 10µF 钽电容(低 ESR)和一个 0.1µF 的陶瓷电容并联。增加并联的电容可以有效去除高频干扰。同时为防止浪涌对芯片的损坏,建议在模块电源输入管脚使用一个适合电压的 500mW 的齐纳二极管防止模块的超压损坏。 PCB 布局时,电容和二极管应尽可能靠近模块的电源输入管脚。
  • 10.25 13:28:27
    发表了文章 2022-10-25 13:28:27

    无线无源振弦采集仪的常见问题

    (1)设置更长的采发时间间隔,减少采发频度。 (2)不需要的通道配置为“不发送”,减少发送的数据内容。 (3) 使用 HEX 格式发送,减少发送的数据长度。 (4)修改 LoRA 参数,缩短发送时长(不推荐)。 (5)关闭唤醒侦听功能(仅保留定时采发功能)。
  • 10.25 13:26:02
    发表了文章 2022-10-25 13:26:02

    工程安全监测无线无源采集仪无线网络的优势

      无线网络允许多个用户通过同一个网络进行连接。在几秒钟内无需任何配置,即可通过路由器或热点技术建立连接。这种易用性和便利性在有线网络中不存在。在有线网络中,配置和允许多个用户访问需要更多时间。
  • 10.25 09:34:10
    发表了文章 2022-10-25 09:34:10

    红外线非接触体温计的工作原理及用途

    红外线体温计是专门为测量人体温度而设计的,同时也可以测量环境温度、物体温度等等。采用红外线测温探头,测量精度高性能更稳定。红外线体温计具有体温偏高时的声音提示功能,自动关机的节电功能更加使得消费者的喜爱。
  • 10.24 15:12:45
    发表了文章 2022-10-24 15:12:45

    无线振弦传感采集仪的工作及休眠模式下状态

    进一步地进入停机状态。停机状态具有最低的电流消耗。 在省电模式下, LoRA-A 和 LoRA-B 会不断地监听有无 LoRA 唤醒信号,若有则会自动退出省电模式进入实时接收模式进行数据接收。
  • 10.24 09:43:51
    发表了文章 2022-10-24 09:43:51

    测温仪器的原理知多少?

    测温枪也叫测温仪,这个东西有可能对我们来说都比较陌生,它主要是应用红外测温技术提供生产生活中的温度测量,所以又被称为红外测温枪。这项技术在产品质量控制和监测、设备在线故障诊断、安全保护以及节约能源等发挥着重要作用,它以响应时间快、非接触、使用安全以及使用寿命长等优点,得到了广大消费者的青睐。简单的了解一下测温枪的优点以及它的工作原理吧。
  • 10.21 14:53:57
    发表了文章 2022-10-21 14:53:57

    城市防汛降雨量监测系统

    伴随着温室效应的巨大影响、环境的变化以及大规模的城镇化建设,城市建设水平和规划经验不足,对防洪、排雨等地下设施投入相对不足,导致现有的城市防洪标准与城市的经济地位不相称,在遭遇突发强降雨时,同样的洪水造成的灾害损失是过去的几倍甚至几十倍。
  • 10.21 14:51:39
    发表了文章 2022-10-21 14:51:39

    光学雨量计传感器的检测原理

    降水监测是在时间和空间上所进行的降水量和降水强度的观测。测量方法包括用雨量计直接测定方法以及用天气雷达、卫星云图估算降水的间接方法。直接观测方法需设定雨量站网,站网的布设必须有一定的空间密度,并规定统一的频次和传递资料的时间,有关要求根据预期的用途来决定。
  • 10.21 10:36:43
    发表了文章 2022-10-21 10:36:43

    振弦采集模块针脚详细说明

    建议靠近电源管脚( VDD 尤其重要) 使用一个 10µF 钽电容(低 ESR)和一个 0.1µF 的陶瓷电容并联。增加并联的电容可以有效去除高频干扰。同时为防止浪涌对芯片的损坏,建议在模块电源输入管脚使用一个适合电压的 500mW 的齐纳二极管防止模块的超压损坏。 PCB 布局时,电容和二极管应尽可能靠近模块的电源输入管脚。
  • 10.20 16:34:45
    发表了文章 2022-10-20 16:34:45

    无线自动化采集监测系统

    无线自动化采集系统主要由无线采集节点、数据采集基站、数据服务器和数据采集软件等构成。 无线振弦采集系统(NLM5或6多通道无线采集采发仪)是一种岩土工程监测仪器,它适用于各类振弦式传感器采集频率信号,(表面式应变计、混凝土应变计、钢筋应变计、内埋式裂缝计、表面裂缝计、土压力盒、锚索计等)。利用这些传感器可对大坝、桥梁、堤防、引水工程、建筑、市政地铁深基坑的内力、压力、沉降水平位移、变形,交通市政工程(船闸、铁道、地铁)以及高边坡等工程的应力、应变、变形、渗流、渗压等物理量监测和安全稳定分析,并广泛应用在健康监测领域。
  • 10.20 16:32:14
    发表了文章 2022-10-20 16:32:14

    NLM5系列无线振弦采集仪的三种工作状态

    NLM5系列三种工作状态 工作于超时休眠模式的设备有三种状态(待机、空闲、停机)。
  • 10.20 10:15:14
    发表了文章 2022-10-20 10:15:14

    VM系列振弦采集模块(智能振弦传感器测量模块)其它常见问题

    VM系列振弦采集模块(智能振弦传感器测量模块)其它常见问题 最新固件版本 V3.52支持智能振弦传感器测量读取功能,开发振弦采集仪功能更丰富。振弦传感器四线制嵌入电子标签专用读数模块TR01,可以读取振弦传感器内置的两线制电子标签,获取传感器数字信息(传感器型号、量程、K值、编号,出厂频率等非常全的传感器信息)。
  • 10.19 11:30:31
    发表了文章 2022-10-19 11:30:31

    NLM5系列中继采集采发仪常见问题

    对于 NLM 的参数访问必须是基于设备地址的指令(MDOBUS、 AABB、字符串),所以首先要确认指令中的设备地址是否正确。当使用字符串指令时,一定要确认指令的 3 个前导符号是否正确。指令前导符号可以从上电信息中获取,详见“查看设备基本信息”。若上电信息中的指令前导符号为“乱码” 或者“空” 时,可使用“@REST” 超级指令恢复设备为出厂状态。
  • 10.19 11:29:05
    发表了文章 2022-10-19 11:29:05

    工程安全监测无线中继采集仪和无线网络的优势

      无线网络允许多个用户通过同一个网络进行连接。在几秒钟内无需任何配置,即可通过路由器或热点技术建立连接。这种易用性和便利性在有线网络中不存在。在有线网络中,配置和允许多个用户访问需要更多时间。
  • 10.19 09:43:02
    发表了文章 2022-10-19 09:43:02

    智能振弦传感器的读取工具振弦采集仪

    针对振弦传感器间接测物理量繁复的难题,将微处理器与振弦传感器信号电路相结合,构成具有通信,存储信息,测温和传递传感器信号功能的智能振弦模块;嵌入传统振弦传感器的二根信号线中,连接仪表,由电信号切换隐含地线作用的通信线和信号线;使之成为直接测量显示压力,同步温度等物理量和读编号的二线智能振弦传感器.不携带标定数据文档,无须人工抄写电缆端头上的编号,测量频率;无须操作计算标定系数和被测物理量.经数百只智能钢筋计,智能应变计,智能压力盒实验表明:测物理量直观,简单,易于高精度数学模型应用,普遍提高振弦传感器在岩土工程监测中的测量准确度和内外业工作效率,二线制易于多点自动切换.
  • 10.18 14:14:26
    发表了文章 2022-10-18 14:14:26

    LoRa中继的工作流程

    LoRa中继的工作流程:   1、中继注册入网后进行周期性的CAD检测(周期1.8s)   2、节点Join失败,切换到中继模式,JoinDelay1+1s,JoinDelay2+2s   3、节点在中继频点发送带长前导(2.1s)、IQ反向的JoinRequest
  • 10.18 14:13:12
    发表了文章 2022-10-18 14:13:12

    LoRA转4G DLS11网关中继器工作原理

    什么是LoRa LoRa是低功耗局域网无线标准,低功耗一般很难覆盖远距离,远距离一般功耗高,LoRa的名字就是远距离无线电(Long Range Radio),它最大特点就是在同样的功耗条件下比其他无线方
  • 10.18 10:16:57
    发表了文章 2022-10-18 10:16:57

    智能振弦传感器的参数智能识别技术原理

    河北稳控科技在2020年就开始研发出智能振弦传感器电子标签专用读数模块模块TR01,最早应用到手持振弦采集仪VH03型上面,并申请获得了两项标准专利,一直应用于工程项目上安全监测使用,也就是自产自用。近期升级了振弦采集仪的核心VM系列振弦采集模块( 修改固件版本号为 V3.52_2201009。增加了电子标签测量功能。 WKMOD.[12]用于控制是否使用此功能新增状态位 STATUS,用来表示是否检测到了电子标签。增加了电子标签信息读取指令$RDDT=1,2。增加了寄存器 89(多通道电子标签状态)),也就是说所有的振弦采集仪都支持电子标签读取功能,让振弦传感器插上了智能的翅膀,在工程安全监
  • 10.17 14:21:49
    发表了文章 2022-10-17 14:21:49

    智能振弦传感器的核心技术-电子标签模块

    在前面我们讲了《振弦传感器的发展及信息化的核心技术-VM系列振弦采集模块》中提到河北稳控科技研发并批量生产的激励测读模块(振弦采集模块),解决了振弦传感器由模拟信号直接转变为数字信号的问题。近两年来,振弦传感器的技术得到了进一点的提升,新技术的改变是围绕着使用者的习惯的改变,也不是所有的新技术都能让人接受,不过新技术是在原基础上改良,让学习使用成本非常低,而又带来极方便快捷的体验效果,应该是没人反对的了。
  • 10.14 13:15:35
    发表了文章 2022-10-14 13:15:35

    频率温度传感器多路传感器群控集线器如何扩展200路传感器

    SHxxx 是可以将多路传感器轮转切换到单一接口的传感器集线器(最多200 路),从而避免测试现场传感器数量较多时造成的传感器编号混乱问题。适用于2/3/4 线制所有传感器(例如:振弦、NTC 热敏电阻温度、差阻、电压、电流、485数字传感器等)。
  • 10.14 09:07:35
    发表了文章 2022-10-14 09:07:35

    VM系列振弦采集模块电源接口详细说明

    VMXXX 模块有多个电源接口,分别为: 宽电压电源输入( VIN)、内核电源( VDD)、 参考电压源( VREF)、 振弦传感器激励电源( VSEN), 各电源共用 GND。
  • 10.14 08:52:27
    发表了文章 2022-10-14 08:52:27

    VM系列振弦采集模块测量振弦传感器的流程步骤

    VM 的测量过程分为激励、采样、计算三个大的步骤。在连续测量模式, 采样信号并计算完成后立即重新开始一次新的测量过程,而在单次测量模式时,仅会在收到单次测量指令后才会触发指定次数的测量过程,测量完成后进入待机等待状态( 等待指令)。
  • 10.13 15:21:16
    发表了文章 2022-10-13 15:21:16

    工程监测振弦无线采集仪VS-BOX 外接数字传感器接入逻辑与数据发送

    单类型数字传感器:使用寄存器 DS_SENSOR(282)来设置单类型数字传感器的类型和数量(见下表)。 VS 会自动轮巡发送传感器读取指令,当 VS 接收到传感器输出的数据后解析数据并将其更新到通道寄存器 CHxx 内,最终发送到远程服务器上。
  • 10.13 10:15:02
    发表了文章 2022-10-13 10:15:02

    手持振弦VH501TC采集仪工程现场快速测量传感器

    便携式手持设备面板的设计与其他工业设备的主要区别在于具有便携性和可操作性。通过人机进行操作能够对手握区域、外部接口区域、显示和操作区域进行接触,同时,手持检测设备的外观设计还要能够与人体结构相契合,达到手持的舒适度等。如手持振弦VH501TC,在工程监测振弦传感器时就很方便快捷,连接上传感器,立即读取到数据,每个测点检测时就能快速及时处理。
  • 10.12 14:15:11
    发表了文章 2022-10-12 14:15:11

    无线采集仪外接数字传感器接入逻辑与数据发送

    单类型数字传感器:使用寄存器 DS_SENSOR(282)来设置单类型数字传感器的类型和数量(见下表)。 VS 会自动轮巡发送传感器读取指令,当 VS 接收到传感器输出的数据后解析数据并将其更新到通道寄存器 CHxx 内,最终发送到远程服务器上。
  • 10.12 13:17:16
  • 10.12 13:15:52
    发表了文章 2022-10-12 13:15:52

    无线型振弦传感器采集采集仪常见的使用操作说明注意事项

    VS-BOX 可使用内置电池(默认)也可使用外部电池工作。 需要特别注意:严禁内置和外部电池(电源)同时使用,严重时会造成短路起火,设备永久损坏。
  • 10.12 09:42:31
    发表了文章 2022-10-12 09:42:31

    多通道振弦传感器无线采发仪VS-BOX通讯接口与电源接口定义

    VS-Box 是以振弦、温度传感信号为主的多通道无线采发仪,并可扩展其它模拟(电流、电压、电阻)信号和数字信号( RS485、 RS232)传感器通道,内置电池,可外接太阳能电池板。最多可实现 32 通道的全自动采集存储和无线发送,支持内部及外部 U 盘数据存储; 1 路程控电源输出可为其它传感器供电;RS232/RS485 数据接口。
  • 10.11 14:50:12
    发表了文章 2022-10-11 14:50:12

    VM501系列振弦采集模块硬件仪器设备开发核心

    振弦式传感器测量主要用于大型岩土工程,对多点振弦式传感器的测量数据进行定时自动采集,直接计算显示各测点的物理量值,并存贮于数据库中,供分析 研究之用。其中自动测量单元拥有分布式网络化测量、测量数据存贮、自动定时测量、计算机通讯、测量数据管理、测量成果输出等功能。
  • 发表了文章 2024-08-09

    以下是未来无人驾驶汽车发展的一些方向和机会

  • 发表了文章 2024-08-09

    以下是无人驾驶汽车未来发展的几个主要机会

  • 发表了文章 2024-08-09

    无人驾驶汽车未来发展方向有许多机会

  • 发表了文章 2024-08-02

    无人驾驶汽车有望改善交通拥堵问题

  • 发表了文章 2024-08-02

    无人驾驶汽车的智能化和自动化技术可以使车辆之间的通行更加协调

  • 发表了文章 2024-08-01

    无人驾驶汽车可以通过优化路线和交通流动来减少交通拥堵

  • 发表了文章 2024-08-01

    无人驾驶汽车也面临着一些挑战。

  • 发表了文章 2024-08-01

    无人驾驶汽车的出现被认为可以解决交通拥堵问题,但同时也面临着一些挑战。

  • 发表了文章 2024-07-31

    本文将探讨无人驾驶汽车如何应对交通拥堵,并指出这种技术可能面临的挑战。

  • 发表了文章 2024-07-31

    对于无人驾驶汽车是否能够真正解决交通拥堵问题

  • 发表了文章 2024-07-31

    本文将探讨无人驾驶汽车如何解决交通拥堵问题以及可能面临的挑战。

  • 发表了文章 2024-07-30

    无人驾驶汽车将极大地改变我们的出行方式

  • 发表了文章 2024-07-30

    无人驾驶汽车可以解决交通拥堵问题

  • 发表了文章 2024-07-30

    无人驾驶汽车将彻底改变我们的交通方式

  • 发表了文章 2024-07-26

    无人驾驶汽车的未来发展充满了无限的可能性和令人期待的创新

  • 发表了文章 2024-07-26

    无人驾驶汽车下面将探讨几个值得期待的发展方向。

  • 发表了文章 2024-07-26

    以下是我认为未来发展中值得期待的几个方面

  • 发表了文章 2024-07-19

    无人驾驶汽车的未来发展具有以下几个机遇

  • 发表了文章 2024-07-19

    以下将探讨无人驾驶汽车未来发展的几个重要机遇

  • 发表了文章 2024-07-19

    无人驾驶汽车是当今科技领域的热门话题之一

正在加载, 请稍后...
滑动查看更多
  • 回答了问题 2024-06-25

    函数计算一键部署ComfyUI绘画平台的优势有哪些?

    函数计算一键部署ComfyUI绘画平台的优势包括: 简便快捷:函数计算可以实现一键部署,简化了部署过程,无需手动配置服务器等环境,大大减少了开发人员的工作量和时间成本。 弹性伸缩:函数计算可以根据业务需求自动进行弹性伸缩,根据请求的并发量自动调整资源的分配,能够有效应对高峰期的访问压力。 高可用性:函数计算具有自动监控和自动恢复的能力,在发生故障时能够自动进行切换和恢复,保证服务的持续可用性,提高服务的稳定性和可靠性。 节约成本:函数计算是按需付费的,只需要根据实际使用的资源和执行的次数来付费,避免了长期维护和管理服务器的成本,能够节约开发和运维的成本。 高性能:函数计算采用分布式架构,可以并行处理多个请求,提高了系统的并发性能和响应速度,能够更好地满足用户的需求。 可扩展性:函数计算支持与其他云服务进行集成,可以快速扩展功能,例如与存储服务进行集成,存储和管理绘画平台所需的数据,提高了系统的扩展性和灵活性。 安全性:函数计算提供了严格的身份验证和权限控制机制,保障用户数据的安全性和隐私保护,能够有效防止恶意攻击和数据泄露的风险。 通过函数计算一键部署ComfyUI绘画平台,能够快速搭建并运行一个高性能、高可用性和安全性的绘画平台,提供优质的用户体验,满足用户的创作和分享需求。
    踩0 评论0
  • 回答了问题 2024-04-11

    通义千问 为什么会中断对话?

    对话可能会因为多种原因中断,其中一些可能包括: 意外断开:网络连接不稳定、技术故障等因素可能导致对话中断。 用户指令:用户可以通过发出特定指令来结束对话,例如“停止”、“退出”等。 无法理解:如果系统无法理解用户的输入或问题,可能会中断对话以避免错误的回答。 超时:对话可能会在一段时间后自动中断,以便系统能够处理其他请求或进行休眠。 在您的情况中,系统中断对话可能是因为一次完整的回答后,系统需要重新处理其他请求或休眠一段时间。您可以另起一个对话来提出其他问题或继续讨论。
    踩0 评论0
  • 回答了问题 2024-04-11

    关于训练模型的精确度问题

    训练模型的精确度问题有很多可能的原因。以下是一些可能导致你的训练后模型在推理时与你的数据集不匹配的原因: 数据集的选择:你可能使用了一个与实际应用场景不匹配的数据集进行微调。如果数据集与你在实际部署中遇到的数据不够相似,模型可能在推理时表现不佳。 数据集质量:数据集中的样本质量对模型的性能有重要影响。如果数据集中存在标注错误、噪音或不一致的样本,模型训练时可能受到干扰,导致推理时不准确。 数据集规模:训练模型的数据集规模越大,通常会带来更好的性能。如果你使用的训练数据集过小,模型可能未能充分学习到数据的潜在模式,导致推理时的不匹配问题。 过拟合:过拟合是指模型在训练数据上表现出色,但在未见过的数据上表现不佳。如果你的模型在训练集上表现很好(低loss),但在新的数据集上表现不佳,可能是由于过拟合所致。过拟合可以通过调整模型复杂度、增加正则化等方法来减轻。 输入数据的问题:推理过程中输入数据的质量、格式等也可能导致模型的不匹配。确保输入数据与训练数据的预处理一致,并且输入数据符合模型的期望格式和范围。 模型架构和超参数选择:选择的模型架构和超参数设置也可能影响模型的精确度。不同的任务和数据集可能需要不同的模型架构和超参数配置。 在面对模型精确度问题时,建议你检查以上可能的原因,并逐步排除。可以尝试调整数据集、数据预处理、模型架构、超参数等,进行迭代优化,以提高模型的性能和推理的准确度。
    踩0 评论0
  • 回答了问题 2024-04-11

    在图像处理应用场景下,Serverless架构的优势体现在哪些方面?

    在图像处理应用场景下,Serverless架构具有以下优势: 弹性扩展:图像处理任务常常具有高并发和大量的并行性,Serverless架构可以根据实际需求动态调整计算资源,实现弹性扩展。当有大量图像处理任务需要处理时,Serverless架构可以迅速分配更多资源来处理任务,而在任务减少时,资源可以自动释放,避免资源浪费。 降低成本:Serverless架构的计费方式是按照实际执行的函数时间进行计费,而不是按照预留的固定资源计费。在图像处理应用中,由于任务可能呈现出间歇性和不规律性的特点,传统的预留计算资源方式会导致资源的浪费。而使用Serverless架构,可以根据任务的实际需求进行动态分配,避免了资源的浪费,从而降低了成本。 快速部署和开发:Serverless架构对于开发者来说,具有快速部署和开发的优势。开发者只需专注于业务逻辑的实现,而不需要关心服务器的管理和维护。通过使用现成的Serverless服务,开发者可以迅速部署应用程序,并且可以快速响应需求变化,加快产品上线和迭代的速度。 高可用性和容错性:Serverless架构通常采用多个分布式数据中心的部署方式,这样可以提高系统的可用性和容错性。在图像处理应用中,由于处理任务可能很多且耗时较长,通过分布式的部署方式可以避免单个节点的故障对整个系统的影响,保证系统的稳定性和可靠性。 在图像处理应用场景下,Serverless架构具有弹性扩展、降低成本、快速部署和开发、高可用性和容错性等优势,能够更好地满足图像处理任务的需求,并提供高效、可靠的服务。因此,Serverless架构成为了越来越多企业和开发者选择的解决方案。
    踩0 评论0
  • 回答了问题 2024-04-11

    如何处理线程死循环?

    处理线程死循环问题需要从两个方面考虑:定位问题和处理问题。 第一,定位问题。当发现线程死循环时,我们需要找出导致死循环的原因。常见的定位方法包括: 1.使用调试工具:可以使用调试工具来跟踪线程的执行流程,查看代码中可能导致死循环的地方,并进行逐步调试,以找出问题所在。 2.日志记录:在代码中加入日志记录的功能,可以在出现线程死循环时输出相关的日志信息,有助于定位问题所在。 3.运行时监控:使用监控工具对线程运行情况进行监控,如CPU使用率、线程状态等,可以发现线程死循环的异常情况。 第二,处理问题。一旦找出了导致线程死循环的原因,需要采取相应的措施进行处理。 1.修复代码逻辑错误:检查代码中可能导致死循环的地方,并修复逻辑错误或添加必要的退出条件,以避免线程陷入死循环状态。 2.合理使用同步机制:线程死循环往往与多线程竞争状态有关,合理使用同步机制来保证线程间资源的正确共享和竞争状态的正确处理,可以有效避免线程死循环。 3.设置超时机制:对于执行时间长的操作,可以设置一个合理的超时时间,在超过该时间后,强制结束线程的执行,以防止线程死循环。 4.使用线程池:使用线程池可以控制线程的数量,避免过多线程导致系统资源的浪费,并提供了对线程的管理和监控能力,方便定位和处理线程死循环问题。 结合来说,定位和处理线程死循环问题需要使用调试工具、日志记录、运行时监控等方法来定位问题,并修复代码逻辑错误、合理使用同步机制、设置超时机制、使用线程池等措施来处理问题。在编码阶段,需要养成良好的编码习惯,合理设计线程的逻辑和同步机制,预防线程死循环问题的发生。
    踩0 评论0
  • 回答了问题 2024-04-10

    我集成sentinel后,在csp的目录里没有找到metrics.log,请问这种情况是因为什么呀?

    这种情况可能是因为 Sentinel 的配置导致的。在 Sentinel 的配置中,您可以设置输出日志的方式和路径。如果您没有特别配置,那么默认情况下 Sentinel 的日志会输出到控制台而不会写入文件。 要将 Sentinel 的日志写入文件,您可以在 Sentinel 的启动配置中指定日志文件的路径。具体的配置方式取决于您使用的是哪种集成方式(例如 Spring Cloud、Dubbo 等)。下面是一些常见集成方式下配置 Sentinel 日志文件路径的示例: 对于 Spring Cloud Gateway,您可以在 application.yml 文件中配置: spring: cloud: sentinel: transport: log-dir: /path/to/your/log/directory/ 对于 Dubbo,您可以在 dubbo.properties 文件中配置: dubbo.sentinel.transport.log.dir=/path/to/your/log/directory/ 对于 Spring Boot(使用 @EnableSentinel 注解的方式),您可以在 application.yml 文件中配置: spring: sentinel: transport: log-dir: /path/to/your/log/directory/ 请注意替换示例中的 '/path/to/your/log/directory/' 为您实际的日志文件路径。 配置完成后,重启应用程序并观察日志文件目录,您应该能够看到 Sentinel 的日志文件 metrics.log。 另外,请确保您的应用程序正常发送数据给 Sentinel,以确保 Sentinel 的指标数据能够正确记录到 metrics.log 中。
    踩0 评论0
  • 提交了问题 2024-03-26

    振弦采集仪的主要功能和用途?

  • 回答了问题 2024-01-24

    你以为的Bug VS 实际的Bug

    作为一个开发者,我遇到过很多以为的Bug和实际的Bug有很大出入的情况。以下是一些例子: 以为的Bug:用户报告说他们在应用程序中的某个功能上遇到了一个奇怪的错误。我花了很多时间来调试代码,但是无论如何都无法重现这个错误。最后,我发现这个问题不是因为代码的Bug,而是因为用户在使用特定的输入数据时输入了不正确的值。 以为的Bug:应用程序在某些特定的机器上崩溃了,但在其他机器上运行良好。我猜测是因为这些机器的硬件或操作系统的问题,花了很多时间去分析和修改代码,但问题依然存在。最后,我发现是由于这些机器上安装了另一个应用程序,与我的应用程序发生了冲突。 以为的Bug:用户报告说在应用程序中的某个页面上的按钮不起作用。我检查了代码,并发现逻辑上没有任何错误。经过一番调试之后,我发现用户的手机上安装了一个屏蔽广告的应用程序,这个应用程序干扰了我的应用程序的正常运行。 以为的Bug和实际的Bug之间的出入通常是由于外部因素或用户行为造成的,而不是代码本身的问题。作为开发者,我们需要时刻保持开放的心态,仔细分析问题的来源,不仅要关注代码层面的错误,还要考虑用户环境和交互等因素。
    踩0 评论0
  • 回答了问题 2024-01-16

    DataWorks中,我在查找支持实例错误的时候提示我以下错误原因,我该如何解决?

    根据错误提示,您遇到的问题是由于缺少RAM角色授权导致的。要解决该问题,您可以按照以下步骤操作: 登录阿里云控制台,进入RAM角色管理页面。在角色列表中找到角色名称为'[hzsoterea-mysql-read]'的角色。点击该角色名称进入角色详情页面。在角色详情页面中,点击'授权策略管理'。点击'新增授权策略',选择需要的授权策略,如AliyunRDSReadOnlyAccess等。点击'确认'完成授权策略的添加。回到DataWorks页面,尝试重新查找支持实例错误,看是否问题已经解决。 如果以上步骤无法解决问题,建议您联系阿里云客服寻求进一步的帮助和支持。
    踩0 评论0
  • 回答了问题 2024-01-16

    DataWorks离线同步 日期和时间参数如何拼接?

    在DataWorks离线同步任务中,可以使用函数对日期和时间参数进行拼接。以下是一些常用的日期和时间函数: to_char(date, format):将日期或时间转换成指定格式的字符串。其中,date是要转换的日期或时间,format是转换的格式。 trunc(date, format):截取指定日期或时间的部分。其中,date是要截取的日期或时间,format是要截取的部分,如年、月、日等。 add_months(date, n):在指定日期或时间上加上指定的月数。其中,date是要添加的日期或时间,n是要添加的月数。 date_sub(date, n):在指定日期或时间上减去指定的天数。其中,date是要减去的日期或时间,n是要减去的天数。 在拼接日期和时间参数时,可以使用上述函数对日期和时间进行转换、截取、加减操作。例如,可以使用to_char函数将日期或时间转换成指定格式的字符串,然后使用||运算符将转换后的字符串拼接在一起。 以下是一个示例,演示如何将日期和时间参数进行拼接: -- 假设参数date和time分别表示日期和时间,格式为'yyyy-mm-dd'和'hh24:mi:ss' -- 需要将日期和时间拼接成'yyyy-mm-dd hh24:mi:ss'的格式 -- 使用to_char函数转换日期和时间,并将它们拼接在一起 SELECT to_char(date, 'yyyy-mm-dd') || ' ' || to_char(time, 'hh24:mi:ss') AS datetime FROM table_name; 在实际使用中,根据具体需求选择合适的函数和格式,进行日期和时间的拼接操作。
    踩0 评论0
  • 回答了问题 2023-09-12

    手撕代码是程序员的基本功吗?

    手撕代码可以被视为程序员的基本功之一,因为它可以提高程序员的代码理解和写作能力。通过手写代码,程序员可以更深入地理解代码结构、逻辑和语法,从而更好地调试代码和解决问题。此外,手写代码还可以帮助程序员掌握常用的算法和数据结构,提高编程能力。虽然今天的开发环境提供了许多工具和框架,但对于程序员而言,手写代码仍然是不可或缺的一部分。
    踩0 评论0
  • 回答了问题 2023-08-21

    开发者需要怎样的技术社区?

    我来说几点,在知识爆炸的当下,开发者需要一个开放、活跃、互动的技术社区,以便获取最新的技术资讯和交流学习经验。 以下是开发者需要的技术社区特点: 开放性:开发者需要一个可以自由分享和学习的平台,社区应该是开放的,容纳不同的观点和想法。 活跃性:技术社区应该是一个活跃的地方,开发者可以在这里分享自己的项目、技术经验、解决问题的方法等等。 互动性:社区应该是一个互动的环境,开发者可以通过评论、点赞等方式与其他开发者交流,分享观点和经验。 可信性:社区应该是一个可信的平台,开发者可以在这里获取可靠的技术资讯和经验分享,而不是被误导。 多元性:社区应该是一个多元化的环境,容纳不同技术领域的开发者,涵盖不同的技术主题和领域。 一个好的技术社区好不好,看看是不是一个开放、活跃、互动、可信、多元的平台,为开发者提供最佳的学习和交流环境。
    踩0 评论0
  • 回答了问题 2023-08-21

    你觉得现在的阿里云足够具备“性价比”吗?

    根据市场上的评价,阿里云在性价比方面一直处于较高的水平,其相对较低的价格和较高的性能表现吸引了很多用户。同时阿里云还提供丰富的产品和服务,例如弹性计算、容器服务、数据库、网络安全等等,满足了不同用户的需求,因此在云计算市场上具有一定的竞争力。但是具体的性价比评价还需要根据用户的实际需求和使用情况而定。
    踩0 评论0
  • 回答了问题 2023-02-13

    ChatGPT给国内外科技公司带来了怎样的机遇和威胁?

    从各大媒体及自媒体的使用宣传有点夸大,但未来新版的发展估计会颠覆很多传统行业,按现在这个版本,基本可以做到陪伴机器人来使用了,搜索上可能得出的结果更快速方便,但在我们国家可能会受阻,大公司都保护自己的内容,都开发自己的APP,数据抓取只能通过网页,会导致抓取的内容不全面。不过也因为这个原因,会不会国家信息安全得到一定的保护呢? AI快速发展会让人类科技发展进入另一个黄金时期,爆发性发明及变化可能会让世界焕然一新,打破所有人的思想。
    踩0 评论0
  • 回答了问题 2023-02-08

    《流浪地球2》有哪些硬核科技会在未来50年实现?

    我还是保守点,对未来50年的科技发展产生了怎样的期待?特别期待的是人与人,人与物的沟通,现在还需要通过手机或电脑来连接,充电,账号,便携性等非常不方便,未来这些沟通障碍相信植入皮肤芯片或植入微型通讯工具就能解决这个问题,用人体热量发电,DNA账号,随时随地沟通,值得期待。
    踩0 评论0
  • 回答了问题 2023-02-02

    2023,社区讨论聊什么?话题由你定!

    开发者与家庭宠物怎么能更智慧地互动,回到家不管单身还是有老人的家庭,宠物都是陪伴家庭成员的重要成员,但一般宠物也会偏爱一个家庭成员,哈。。。能开发什么产品能更好知道宠物在想什么,做什么,很感兴趣。
    踩0 评论0
  • 回答了问题 2023-01-29

    如何用程序员的方式回答过年被问到的问题?

    亲戚朋友最爱问的都是个人隐私问题,一般只要你平和点聊天,说不如他们,一般他们就开心了,争论问题大过年的真没必要。问结婚,正在谈或准备着、问买房,已经有打算,明年准备买,明年还有明年啊。问买车,已经考好驾驶证或正在学车,都有准备了。反正问什么,都是已经有安排打算或正准备着。反问一下,能不能支持帮忙一下,他们就会闭嘴了。
    踩0 评论0
  • 回答了问题 2022-11-23

    畅聊云栖(1) | 用科技创造怎样的未来?

    云栖大会的前身可追溯到2009年的地方网站峰会,经过两年发展,2011年演变成阿里云开发者大会,到2015年正式更名为“云栖大会”,并且永久落户杭州市西湖区云栖小镇。 云栖大会以引领计算技术创新为宗旨 ,承载着计算技术的新思想、新实践、新突破。历经14载,见证了中国计算产业的萌发与革新。从云计算到数据智能,从飞天操作系统到城市大脑,云栖大会在云栖小镇传递创新火种,描绘计算未来。 2022云栖大会于11月3日-5日举行,以“计算·进化·未来”为主题,开启多项最前沿的技术与思想议题,引领走向下一个计算时代。云栖大会结束了,期待明年再见。
    踩0 评论0
  • 回答了问题 2022-10-12

    多道通VS无线采集仪不能使用手机网络发送无线数据是什么原因?

    ( 1)检查 SIM 卡是否欠费。 ( 2)设备的信号是否正常。 ( 1)若使用短消息发送,请确认 SIM 是否支持短信功能并开通了短信业务。 ( 2)若使用 GPRS 发送,请使用第三方工具检验服务器地址及端口是否可以正常访问。
    踩1 评论0
  • 回答了问题 2022-10-08

    不同的振弦传感器测出的频率数据存在几Hz的误差是否正常?

    误差是否正常不能看它的绝对数值,要看相对值(绝对数值和总量的比) 例如:对于正常频率再几十Hz的传感器来说,几Hz的误差算是比较大的,但对于几KHz的传感器来说,几Hz的误差往往很正常。
    踩1 评论0
正在加载, 请稍后...
滑动查看更多
正在加载, 请稍后...
暂无更多信息