前言
华夫饼图(waffle chart)分为块状华夫饼图和点状华夫饼图。华夫饼图是展示总数据的组类别情况的一种有效图表。它是西方的一种 由小方格组成的面包,所以这种图表因此得名为华夫饼图。
本文框架
数据介绍
#相关包 library(ggplot2) library(RColorBrewer) library(reshape2)
nrows <- 10 categ_table <- round(table(mpg$class ) * ((nrows*nrows)/(length(mpg$class)))) sort_table<-sort(categ_table,index.return=TRUE,decreasing = FALSE) Order<-sort(as.data.frame(categ_table)$Freq,index.return=TRUE,decreasing = FALSE) df <- expand.grid(y = 1:nrows, x = 1:nrows) df$category<-factor(rep(names(sort_table),sort_table), levels=names(sort_table)) Color<-brewer.pal(length(sort_table), "Set2") head(df)
前 6 行数据如下所示,y 从 1~10,x 也是从 1~10。
ggplot 包绘制
块状华夫饼图
块状华夫饼图的小方格用不同颜色表示不同类别,适合用来快速检视数 据集中不同类别的分布和比例,并与其他数据集的分布和比例进行比较,让 人更容易找出当中模式。
接下来通过以上数据进行实现。代码看着很长,但是有一半都是主题的设置theme()
.
ggplot(df, aes(x = y, y = x, fill = category)) + geom_tile(color = "white", size = 0.25) + #geom_point(color = "black",shape=1,size=5) + coord_fixed(ratio = 1)+ #x,y 轴尺寸固定, ratio=1 表示 x , y 轴长度相同 scale_x_continuous(trans = 'reverse') +#expand = c(0, 0), scale_y_continuous(trans = 'reverse') +#expand = c(0, 0), scale_fill_manual(name = "Category", #labels = names(sort_table), values = Color)+ theme(#panel.border = element_rect(fill=NA,size = 2), panel.background = element_blank(), plot.title = element_text(size = rel(1.2)), axis.text = element_blank(), axis.title = element_blank(), axis.ticks = element_blank(), legend.title = element_blank(), legend.position = "right")
点状华夫饼图
点状华夫饼图(dot matrix chart)以点为单位显示离散数据,每种颜色 的点表示一个特定类别,并以矩阵形式组合在一起,适合用来快速检视数据 集中不同类别的分布和比例,并与其他数据集的分布和比例进行比较,让人 更容易找出当中模式。当只有一个变量/类别时(所有点都是相同颜色),点 状华夫饼图相当于比例面积图
library(ggforce) ggplot(df, aes(x0 = y, y0 = x, fill = category,r=0.5)) + geom_circle(color = "black", size = 0.25) + #geom_point(color = "black",shape=21,size=6) + coord_fixed(ratio = 1)+ scale_x_continuous(trans = 'reverse') +#expand = c(0, 0), scale_y_continuous(trans = 'reverse') +#expand = c(0, 0), scale_fill_manual(name = "Category", #labels = names(sort_table), values = Color)+ theme(#panel.border = element_rect(fill=NA,size = 2), panel.background = element_blank(), plot.title = element_text(size = rel(1.2)), legend.position = "right")
图解释:这个图从横坐标(y)看,在 y 为 10 时,有 2 个 pichup,一个 subcompact 等。从纵坐标(x)看,在 x 为 10 时,全是 suv 类型。从总体来看,suv 占最多数(16 个),2seater 占最少数(2 个)。
堆积型华夫饼图
这里还有一种比较有趣的华夫饼图。
library(dplyr) nrows <- 10 ndeep <- 10 unit<-100 df <- expand.grid(y = 1:nrows, x = 1:nrows) categ_table <- as.data.frame(table(mpg$class) * (nrows*nrows)) colnames(categ_table)<-c("names","vals") categ_table<-arrange(categ_table,desc(vals)) categ_table$vals<-categ_table$vals /unit tb4waffles <- expand.grid(y = 1:ndeep,x = seq_len(ceiling(sum(categ_table$vals) / ndeep))) regionvec <- as.character(rep(categ_table$names, categ_table$vals)) tb4waffles<-tb4waffles[1:length(regionvec),] tb4waffles$names <- factor(regionvec,levels=categ_table$names) Color<-brewer.pal(nrow(categ_table), "Set2")
ggplot(tb4waffles, aes(x = x, y = y, fill = names)) + #geom_tile(color = "white") + # geom_point(color = "black",shape=21,size=5) + # scale_fill_manual(name = "Category", values = Color)+ xlab("1 square = 100")+ ylab("")+ coord_fixed(ratio = 1)+ theme(#panel.border = element_rect(fill=NA,size = 2), panel.background = element_blank(), plot.title = element_text(size = rel(1.2)), #axis.text = element_blank(), #axis.title = element_blank(), #axis.ticks = element_blank(), # legend.title = element_blank(), legend.position = "right")
waffle 包绘制
当然如果前面代码看的非常吃力的话, 这里有一个好用的包,专为华夫饼图做准备的。
waffle(parts, rows = 10, keep = TRUE, xlab = NULL, title = NULL, colors = NA, size = 2, flip = FALSE, reverse = FALSE, equal = TRUE, pad = 0, use_glyph = FALSE, glyph_size = 12, legend_pos = "right")
主要参数含义:
- parts 用于图表的值的命名向量
- rows 块的行数
- keep 保持因子水平(例如,在华夫饼图中获得一致的图例)
简单例子
该华夫饼图,行为 8,one 占 80 个,two 占 30 个,tree 占 20 个,four 占 10 个。
parts <- c(One=80, Two=30, Three=20, Four=10) chart <- waffle(parts, rows=8) print(chart)