网络异常,图片无法展示
|
题目描述
这是 LeetCode 上的 223. 矩形面积 ,难度为 中等。
Tag : 「容斥原理」
给你 二维 平面上两个 由直线构成的 矩形,请你计算并返回两个矩形覆盖的总面积。
每个矩形由其 左下 顶点和 右上 顶点坐标表示:
- 第一个矩形由其左下顶点 (ax1, ay1) 和右上顶点 (ax2, ay2) 定义。
- 第二个矩形由其左下顶点 (bx1, by1) 和右上顶点 (bx2, by2) 定义。
示例 1:
网络异常,图片无法展示
|
输入:ax1 = -3, ay1 = 0, ax2 = 3, ay2 = 4, bx1 = 0, by1 = -1, bx2 = 9, by2 = 2 输出:45 复制代码
示例 2:
输入:ax1 = -2, ay1 = -2, ax2 = 2, ay2 = 2, bx1 = -2, by1 = -2, bx2 = 2, by2 = 2 输出:16 复制代码
提示:
- -10^4 <= ax1, ay1, ax2, ay2, bx1, by1, bx2, by2 <= 10^4104<=ax1,ay1,ax2,ay2,bx1,by1,bx2,by2<=104
容斥原理
首先在给定左下顶点和右上顶点的情况下,计算矩形面积为 (x2 - x1) * (y2 - y1)(x2−x1)∗(y2−y1)。
因此,起始时我们可以先直接算得给定的两个矩形的面积 AA 和 BB,并进行累加。
剩下的,我们需要求得两矩形的交集面积,利用「容斥原理」,减去交集面积,即是答案。
求交集矩形面积,可以转换为求两矩形在坐标轴上的重合长度,若两矩形在 XX 轴上的重合长度为 xx,在 YY 轴上的重合长度为 yy,则有重合面积为 C = x * yC=x∗y。同时考虑两矩形在任一坐标轴上没有重合长度,则不存在重合面积,因此需要将重合长度与 00 取 \maxmax。
最终答案为 A + B - CA+B−C 。
代码:
class Solution { public int computeArea(int ax1, int ay1, int ax2, int ay2, int bx1, int by1, int bx2, int by2) { int x = Math.max(0, Math.min(ax2, bx2) - Math.max(ax1, bx1)); int y = Math.max(0, Math.min(ay2, by2) - Math.max(ay1, by1)); return (ax2 - ax1) * (ay2 - ay1) + (bx2 - bx1) * (by2 - by1) - (x * y); } } 复制代码
- 时间复杂度:O(1)O(1)
- 空间复杂度:O(1)O(1)
最后
这是我们「刷穿 LeetCode」系列文章的第 No.223
篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先把所有不带锁的题目刷完。
在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。
为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:github.com/SharingSour…
在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。