【每日算法】数据结构运用模拟题 |Python 主题月

简介: 【每日算法】数据结构运用模拟题 |Python 主题月

网络异常,图片无法展示
|


题目描述



这是 LeetCode 上的 451. 根据字符出现频率排序 ,难度为 中等


Tag : 「模拟」、「桶排序」、「哈希表」、「数组」、「优先队列(堆)」


给定一个字符串,请将字符串里的字符按照出现的频率降序排列。


示例 1:


输入:
"tree"
输出:
"eert"
解释:
'e'出现两次,'r'和't'都只出现一次。
因此'e'必须出现在'r'和't'之前。此外,"eetr"也是一个有效的答案。
复制代码


示例 2:


输入:
"cccaaa"
输出:
"cccaaa"
解释:
'c'和'a'都出现三次。此外,"aaaccc"也是有效的答案。
注意"cacaca"是不正确的,因为相同的字母必须放在一起。
复制代码


示例 3:


输入:
"Aabb"
输出:
"bbAa"
解释:
此外,"bbaA"也是一个有效的答案,但"Aabb"是不正确的。
注意'A'和'a'被认为是两种不同的字符。
复制代码


数据结构 + 模拟



这是一道考察数据结构运用的模拟题。


具体做法如下:


  1. 先使用「哈希表」对词频进行统计;
  2. 遍历统计好词频的哈希表,将每个键值对以{字符,词频}的形式存储到「优先队列(堆)」中。并规定「优先队列(堆)」排序逻辑为:
  • 如果 词频 不同,则按照 词频 倒序;
  • 如果 词频 相同,则根据 字符字典序 升序(由于本题采用 Special Judge 机制,这个排序策略随意调整也可以。但通常为了确保排序逻辑满足「全序关系」,这个地方可以写正写反,但理论上不能不写,否则不能确保每次排序结果相同);
  1. 从「优先队列(堆)」依次弹出,构造答案。


代码:


class Solution {
    class Node {
        char c; 
        int v;
        Node(char _c, int _v) {
            c = _c; v = _v;
        }
    }
    public String frequencySort(String s) {
        char[] cs = s.toCharArray();
        Map<Character, Integer> map = new HashMap<>();
        for (char c : cs) {
            map.put(c, map.getOrDefault(c, 0) + 1);
        }
        PriorityQueue<Node> q = new PriorityQueue<>((a,b)->{
            if (b.v != a.v) return b.v - a.v;
            return a.c - b.c;
        });
        for (char c : map.keySet()) {
            q.add(new Node(c, map.get(c)));
        }
        StringBuilder sb = new StringBuilder();
        while (!q.isEmpty()) {
            Node poll = q.poll();
            int k = poll.v;
            while (k-- > 0) sb.append(poll.c);
        }
        return sb.toString();
    }
}
复制代码


class Solution:
    def frequencySort(self, s: str) -> str:
        return "".join(char * repeats for char,repeats in sorted(Counter(s).items(), key=lambda x:-x[1]))
复制代码


  • 时间复杂度:令字符集的大小为 CC。使用「哈希表」统计词频的复杂度为 O(n)O(n);最坏情况下字符集中的所有字符都有出现,最多有 CC 个节点要添加到「优先队列(堆)」中,复杂度为 O(C\log{C})O(ClogC);构造答案需要从「优先队列(堆)」中取出元素并拼接,复杂度为 O(n)O(n)。整体复杂度为 O(\max(n, C\log{C}))O(max(n,ClogC))
  • 空间复杂度:O(n)O(n)


数组实现 + 模拟



基本思路不变,将上述过程所用到的数据结构使用数组替代。


具体的,利用 ASCII 字符集共 128128 位,预先建立一个大小为 128128 的数组,利用「桶排序」的思路替代「哈希表」和「优先队列(堆)」的作用。


代码:


class Solution {   
    public String frequencySort(String s) {
        int[][] cnts = new int[128][2];
        char[] cs = s.toCharArray();
        for (int i = 0; i < 128; i++) cnts[i][0] = i;
        for (char c : cs) cnts[c][1]++;
        Arrays.sort(cnts, (a, b)->{
            if (a[1] != b[1]) return b[1] - a[1];
            return a[0] - b[0];
        });
        StringBuilder sb = new StringBuilder();
        for (int i = 0; i < 128; i++) {
            char c = (char)cnts[i][0];
            int k = cnts[i][1];
            while (k-- > 0) sb.append(c);
        }
        return sb.toString();
    }
}
复制代码


class Solution:
    def frequencySort(self, s: str) -> str:
        map = defaultdict(int)
        for c in s:
            map[c] += 1
        pq = []
        for k,v in map.items():
            heapq.heappush(pq, (-v, ord(k), k))
        ans = []
        while pq:
            repeats, _, char = heapq.heappop(pq)
            ans.append(char*-repeats)
        return "".join(ans)
复制代码


  • 时间复杂度:令字符集的大小为 CC。复杂度为 O(\max(n, C\log{C}))O(max(n,ClogC))
  • 空间复杂度:O(n + C + \log{C})O(n+C+logC)


最后



这是我们「刷穿 LeetCode」系列文章的第 No.451 篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先把所有不带锁的题目刷完。


在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。


为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:github.com/SharingSour…


在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。

相关文章
|
2月前
|
算法 数据可视化 数据挖掘
基于EM期望最大化算法的GMM参数估计与三维数据分类系统python源码
本内容展示了基于EM算法的高斯混合模型(GMM)聚类实现,包含完整Python代码、运行效果图及理论解析。程序使用三维数据进行演示,涵盖误差计算、模型参数更新、结果可视化等关键步骤,并附有详细注释与操作视频,适合学习EM算法与GMM模型的原理及应用。
|
2月前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
60 1
|
2月前
|
存储 监控 算法
基于 Python 跳表算法的局域网网络监控软件动态数据索引优化策略研究
局域网网络监控软件需高效处理终端行为数据,跳表作为一种基于概率平衡的动态数据结构,具备高效的插入、删除与查询性能(平均时间复杂度为O(log n)),适用于高频数据写入和随机查询场景。本文深入解析跳表原理,探讨其在局域网监控中的适配性,并提供基于Python的完整实现方案,优化终端会话管理,提升系统响应性能。
72 4
|
8月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
477 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
3月前
|
PyTorch 算法框架/工具 C++
人工智能算法python程序运行环境安装步骤整理
本教程详细介绍Python与AI开发环境的配置步骤,涵盖软件下载、VS2017安装、Anaconda配置、PyCharm设置及组件安装等内容,适用于Windows系统,助你快速搭建开发环境。
|
4月前
|
算法 Python
Apriori算法的Python实例演示
经过运行,你会看到一些集合出现,每个集合的支持度也会给出。这些集合就是你想要的,经常一起被购买的商品组合。不要忘记,`min_support`参数将决定频繁项集的数量和大小,你可以根据自己的需要进行更改。
161 18
|
4月前
|
存储 机器学习/深度学习 算法
论上网限制软件中 Python 动态衰减权重算法于行为管控领域的创新性应用
在网络安全与行为管理的学术语境中,上网限制软件面临着精准识别并管控用户不合规网络请求的复杂任务。传统的基于静态规则库或固定阈值的策略,在实践中暴露出较高的误判率与较差的动态适应性。本研究引入一种基于 “动态衰减权重算法” 的优化策略,融合时间序列分析与权重衰减机制,旨在显著提升上网限制软件的实时决策效能。
126 2
|
5月前
|
存储 监控 算法
员工电脑监控场景下 Python 红黑树算法的深度解析
在当代企业管理范式中,员工电脑监控业已成为一种广泛采用的策略性手段,其核心目标在于维护企业信息安全、提升工作效能并确保合规性。借助对员工电脑操作的实时监测机制,企业能够敏锐洞察潜在风险,诸如数据泄露、恶意软件侵袭等威胁。而员工电脑监控系统的高效运作,高度依赖于底层的数据结构与算法架构。本文旨在深入探究红黑树(Red - Black Tree)这一数据结构在员工电脑监控领域的应用,并通过 Python 代码实例详尽阐释其实现机制。
107 7
|
6月前
|
人工智能 编解码 算法
如何在Python下实现摄像头|屏幕|AI视觉算法数据的RTMP直播推送
本文详细讲解了在Python环境下使用大牛直播SDK实现RTMP推流的过程。从技术背景到代码实现,涵盖Python生态优势、AI视觉算法应用、RTMP稳定性及跨平台支持等内容。通过丰富功能如音频编码、视频编码、实时预览等,结合实际代码示例,为开发者提供完整指南。同时探讨C接口转换Python时的注意事项,包括数据类型映射、内存管理、回调函数等关键点。最终总结Python在RTMP推流与AI视觉算法结合中的重要性与前景,为行业应用带来便利与革新。
333 5

热门文章

最新文章

推荐镜像

更多