【小家Java】Future、FutureTask、CompletionService、CompletableFuture解决多线程并发中归集问题的效率对比(上)

简介: 【小家Java】Future、FutureTask、CompletionService、CompletableFuture解决多线程并发中归集问题的效率对比(上)

前文


开启线程执行任务,不管是使用Runnable(无返回值不支持上报异常)还是Callable(有返回值支持上报异常)接口,都可以轻松实现。那么如果是开启线程池并需要获取结果归集的情况下,如何实现,以及优劣?


本文将分别以这四种方式解决归集的问题,然后看看效率和使用的方便程度即可


1、Futrue


Future接口封装了取消,获取线程结果,以及状态判断是否取消,是否完成这几个方法,都很有用。


Demo:


使用线程池提交Callable接口任务,返回Future接口,添加进list,最后遍历该List且内部使用while轮询,并发获取结果,代码如下


/**
 * 使用Futrue来实现多线程执行归集操作
 *
 * @author fangshixiang@vipkid.com.cn
 * @description //
 * @date 2018/10/31 11:02
 */
public class FutureDemo {
    public static void main(String[] args) {
        Long start = Instant.now().toEpochMilli();
        //定义一个线程池 方便开启和执行多线程 此处为了方便,直接使用 newFixedThreadPool
        ExecutorService exs = Executors.newFixedThreadPool(10);
        //结果集 装载在list里面
        List<Integer> list = new ArrayList<>();
        List<Future<Integer>> futureList = new ArrayList<>();
        try {
            //1.高速提交10个任务,每个任务返回一个Future入futureList 装载起来  这样10个线程就并行去处理和计算了
            for (int i = 0; i < 10; i++) {
                futureList.add(exs.submit(new CallableTask(i + 1)));
            }
            Long getResultStart = Instant.now().toEpochMilli();
            System.out.println("结果归集开始时间=" + LocalDateTime.now());
            //2.结果归集,用迭代器遍历futureList,高速轮询(模拟实现了并发),任务完成就移除
            while (futureList.size() > 0) {
                Iterator<Future<Integer>> iterable = futureList.iterator();
                //遍历 轮询
                while (iterable.hasNext()) {
                    Future<Integer> future = iterable.next();
                    //如果任务完成就立马取结果,并且,并且把该任务直接从futureList移除掉 否则判断下一个任务是否完成
                    if (future.isDone() && !future.isCancelled()) {
                        //获取结果
                        Integer i = future.get();
                        System.out.println("任务i=" + i + "获取完成,移出任务队列!" + LocalDateTime.now());
                        //把结果装入进去 然后把futrue任务移除
                        list.add(i);
                        iterable.remove();
                    } else {
                        Thread.sleep(1);//避免CPU高速运转(这就是轮询的弊端),这里休息1毫秒,CPU纳秒级别
                    }
                }
            }
            System.out.println("list=" + list); //任务的处理结果
            System.out.println("总耗时=" + (System.currentTimeMillis() - start) + ",取结果归集耗时=" + (System.currentTimeMillis() - getResultStart));
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            exs.shutdown();
        }
    }
    // 任务 采用sleep模拟处理任务需要消耗的时间
    static class CallableTask implements Callable<Integer> {
        Integer i; //用来编号任务  方便日志里输出识别
        public CallableTask(Integer i) {
            super();
            this.i = i;
        }
        @Override
        public Integer call() throws Exception {
            if (i == 1) {
                Thread.sleep(3000);//任务1耗时3秒
            } else if (i == 5) {
                Thread.sleep(5000);//任务5耗时5秒
            } else {
                Thread.sleep(1000);//其它任务耗时1秒
            }
            System.out.println("task线程:" + Thread.currentThread().getName() + "任务i=" + i + ",完成!" + LocalDateTime.now());
            return i;
        }
    }
}


如上图,开启定长为10的线程池:ExecutorService exs = Executors.newFixedThreadPool(10);+任务1耗时3秒,任务5耗时5秒,其他1秒。控制台打印如下:


结果归集开始时间=2018-10-31T11:01:19.457
task线程:pool-1-thread-2任务i=2,完成!2018-10-31T11:01:19.976
task线程:pool-1-thread-4任务i=4,完成!2018-10-31T11:01:19.977
task线程:pool-1-thread-3任务i=3,完成!2018-10-31T11:01:19.977
任务i=4获取完成,移出任务队列!2018-10-31T11:01:19.978
task线程:pool-1-thread-9任务i=9,完成!2018-10-31T11:01:19.978
task线程:pool-1-thread-8任务i=8,完成!2018-10-31T11:01:19.978
task线程:pool-1-thread-7任务i=7,完成!2018-10-31T11:01:19.978
task线程:pool-1-thread-6任务i=6,完成!2018-10-31T11:01:19.978
任务i=6获取完成,移出任务队列!2018-10-31T11:01:19.979
任务i=7获取完成,移出任务队列!2018-10-31T11:01:19.979
task线程:pool-1-thread-10任务i=10,完成!2018-10-31T11:01:19.979
任务i=8获取完成,移出任务队列!2018-10-31T11:01:19.979
任务i=9获取完成,移出任务队列!2018-10-31T11:01:19.979
任务i=10获取完成,移出任务队列!2018-10-31T11:01:19.979
任务i=2获取完成,移出任务队列!2018-10-31T11:01:19.980
任务i=3获取完成,移出任务队列!2018-10-31T11:01:19.980
task线程:pool-1-thread-1任务i=1,完成!2018-10-31T11:01:21.964
任务i=1获取完成,移出任务队列!2018-10-31T11:01:21.965
task线程:pool-1-thread-5任务i=5,完成!2018-10-31T11:01:23.977
任务i=5获取完成,移出任务队列!2018-10-31T11:01:23.979
list=[4, 6, 7, 8, 9, 10, 2, 3, 1, 5]
总耗时=5070,取结果归集耗时=5037


看最后的两个结果输出:


list=[4, 6, 7, 8, 9, 10, 2, 3, 1, 5]--》多执行几遍,最后2个总是1,5最后加进去的,可实现按照任务完成先后顺序获取结果! 因为1需要3s,5需要5s是最慢的,所以最后进入list
总耗时=5046,取结果归集耗时=5040 ---》符合逻辑,10个任务,定长10线程池,其中一个任务耗时3秒,一个任务耗时5秒,由于并发高速轮训,耗时取最长5秒


建议:此种方法可实现基本目标,任务并行且按照完成顺序获取结果。使用很普遍,老少皆宜,就是CPU有消耗,可以使用!

2、FutureTask


FutureTask是接口RunnableFuture的唯一实现类(实现了Future+Runnable).

1.Runnable接口,可开启单个线程执行。

2.Future接口,可接受Callable接口的返回值,futureTask.get()阻塞获取结果。


demo:


demo1:两个步骤:1.开启单个线程执行任务,2.阻塞等待执行结果,分离这两步骤,可在这两步中间穿插别的相关业务逻辑

/**
 * FutureTask弥补了Future必须用线程池提交返回Future的缺陷,实现功能如下:
 * 这两个步骤:一个开启线程执行任务,一个阻塞等待执行结果,分离这两步骤,可在这两步中间穿插别的相关业务逻辑。
 *
 * @author fangshixiang@vipkid.com.cn
 * @description //
 * @date 2018/10/31 11:15
 */
public class FutureTaskContorlDemo {
    public static void main(String[] args) {
        try {
            System.out.println("=====例如一个统计公司总部和分部的总利润是否达标100万==========");
            //利润 记录总公司的利润综合
            Integer count = 0;
            //1.定义一个futureTask,假设去远程http获取各个分公司业绩(任务都比较耗时).
            FutureTask<Integer> futureTask = new FutureTask<>(new CallableTask());
            Thread futureTaskThread = new Thread(futureTask);
            futureTaskThread.start();
            System.out.println("futureTaskThread start!" + new Date());
            //2.主线程先做点别的事
            System.out.println("主线程查询总部公司利润开始时间:" + new Date());
            Thread.sleep(5000);
            count += 10; //10表示北京集团总部利润。
            System.out.println("主线程查询总部公司利润结果时间:" + new Date());
            //总部已达标100万利润,就不再继续执行获取分公司业绩任务了
            if (count >= 100) {
                System.out.println("总部公司利润达标,取消futureTask!" + new Date());
                futureTask.cancel(true);//不需要再去获取结果,那么直接取消即可
            } else {
                System.out.println("总部公司利润未达标,进入阻塞查询分公司利润!" + new Date());
                //3总部未达标.阻塞获取,各个分公司结果  然后分别去获取分公司的利润
                Integer i = futureTask.get();//真正执行CallableTask
                System.out.println("i=" + i + "获取到结果!" + new Date());
            }
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
    // 模拟一个十分耗时的任务  去所有的分公司里去获取利润结果
    static class CallableTask implements Callable<Integer> {
        @Override
        public Integer call() throws Exception {
            System.out.println("CallableTask-call,查询分公司利润,执行开始!" + new Date());
            Thread.sleep(10000);
            System.out.println("CallableTask-call,查询分公司利润,执行完毕!" + new Date());
            return 10;
        }
    }
}


FutureTask这个任务,是Thread.start()的时候就开始执行了的。而结果是.get()的时候才会给你(如果提前完成,结果也会先给你缓存在对象内喽。否则get就会阻塞直到有结果了)


注意:倘若你的任务里抛出了异常。那么get方法就会报错从而中断主线程(相当于不需要返回值的异步执行嘛~),但是但是但是,如果你不调用get方法,主线程是不会中断的。


输出:


=====例如一个统计公司总部和分部的总利润是否达标100万==========
futureTaskThread start!Wed Oct 31 11:21:33 CST 2018
主线程查询总部公司利润开始时间:Wed Oct 31 11:21:33 CST 2018
CallableTask-call,查询分公司利润,执行开始!Wed Oct 31 11:21:33 CST 2018
主线程查询总部公司利润结果时间:Wed Oct 31 11:21:38 CST 2018
总部公司利润未达标,进入阻塞查询分公司利润!Wed Oct 31 11:21:38 CST 2018
CallableTask-call,查询分公司利润,执行完毕!Wed Oct 31 11:21:43 CST 2018
i=10获取到结果!Wed Oct 31 11:21:43 CST 2018


如上,分离之后,futureTaskThread耗时10秒期间,主线程还穿插的执行了耗时5秒的操作,大大减小总耗时。且可根据业务逻辑实时判断是否需要继续执行futureTask。


Demo2:FutureTask一样可以并发执行任务并获取结果,如下:


/**
 * FutureTask实现多线程并发执行任务并取结果归集
 *
 * @author fangshixiang@vipkid.com.cn
 * @description //
 * @date 2018/10/31 11:26
 */
public class FutureTaskDemo {
    public static void main(String[] args) {
        Long start = System.currentTimeMillis();
        ExecutorService exs = Executors.newFixedThreadPool(10);
        //结果集
        List<Integer> list = new ArrayList<>();
        List<FutureTask<Integer>> futureList = new ArrayList<>();
        try {
            //启动线程池  和上面Futrue对比,只有这块有点不一样
            for (int i = 0; i < 10; i++) {
                FutureTask<Integer> futureTask = new FutureTask<>(new CallableTask(i + 1));
                //提交任务,添加返回,Runnable特性
                exs.submit(futureTask);
                //Future特性 提交任务后  把futureTask添加进futureList
                futureList.add(futureTask);
            }
            Long getResultStart = System.currentTimeMillis();
            System.out.println("结果归集开始时间=" + new Date());
            //结果归集
            while (futureList.size() > 0) {
                Iterator<FutureTask<Integer>> iterable = futureList.iterator();
                //遍历一遍
                while (iterable.hasNext()) {
                    Future<Integer> future = iterable.next();
                    if (future.isDone() && !future.isCancelled()) {
                        //Future特性
                        Integer i = future.get();
                        System.out.println("任务i=" + i + "获取完成,移出任务队列!" + new Date());
                        list.add(i);
                        //任务完成移除任务
                        iterable.remove();
                    } else {
                        //避免CPU高速轮循,可以休息一下。
                        Thread.sleep(1);
                    }
                }
            }
            System.out.println("list=" + list);
            System.out.println("总耗时=" + (System.currentTimeMillis() - start) + ",取结果归集耗时=" + (System.currentTimeMillis() - getResultStart));
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            exs.shutdown();
        }
    }
    static class CallableTask implements Callable<Integer> {
        Integer i;
        public CallableTask(Integer i) {
            super();
            this.i = i;
        }
        @Override
        public Integer call() throws Exception {
            if (i == 1) {
                Thread.sleep(3000);//任务1耗时3秒
            } else if (i == 5) {
                Thread.sleep(5000);//任务5耗时5秒
            } else {
                Thread.sleep(1000);//其它任务耗时1秒
            }
            System.out.println("task线程:" + Thread.currentThread().getName() + "任务i=" + i + ",完成!" + new Date());
            return i;
        }
    }
}


输出:


结果归集开始时间=Wed Oct 31 11:26:41 CST 2018
task线程:pool-1-thread-8任务i=8,完成!Wed Oct 31 11:26:42 CST 2018
task线程:pool-1-thread-7任务i=7,完成!Wed Oct 31 11:26:42 CST 2018
task线程:pool-1-thread-6任务i=6,完成!Wed Oct 31 11:26:42 CST 2018
task线程:pool-1-thread-4任务i=4,完成!Wed Oct 31 11:26:42 CST 2018
task线程:pool-1-thread-3任务i=3,完成!Wed Oct 31 11:26:42 CST 2018
task线程:pool-1-thread-2任务i=2,完成!Wed Oct 31 11:26:42 CST 2018
task线程:pool-1-thread-10任务i=10,完成!Wed Oct 31 11:26:42 CST 2018
task线程:pool-1-thread-9任务i=9,完成!Wed Oct 31 11:26:42 CST 2018
任务i=8获取完成,移出任务队列!Wed Oct 31 11:26:42 CST 2018
任务i=9获取完成,移出任务队列!Wed Oct 31 11:26:42 CST 2018
任务i=10获取完成,移出任务队列!Wed Oct 31 11:26:42 CST 2018
任务i=2获取完成,移出任务队列!Wed Oct 31 11:26:42 CST 2018
任务i=3获取完成,移出任务队列!Wed Oct 31 11:26:42 CST 2018
任务i=4获取完成,移出任务队列!Wed Oct 31 11:26:42 CST 2018
任务i=6获取完成,移出任务队列!Wed Oct 31 11:26:42 CST 2018
任务i=7获取完成,移出任务队列!Wed Oct 31 11:26:42 CST 2018
task线程:pool-1-thread-1任务i=1,完成!Wed Oct 31 11:26:44 CST 2018
任务i=1获取完成,移出任务队列!Wed Oct 31 11:26:44 CST 2018
task线程:pool-1-thread-5任务i=5,完成!Wed Oct 31 11:26:46 CST 2018
任务i=5获取完成,移出任务队列!Wed Oct 31 11:26:46 CST 2018
list=[8, 9, 10, 2, 3, 4, 6, 7, 1, 5]
总耗时=5066,取结果归集耗时=5058


建议:


demo1在特定场合例如有十分耗时的业务但有依赖于其他业务不一定非要执行的,可以尝试使用。


demo2多线程并发执行并结果归集,这里多套一层FutureTask比较鸡肋(直接返回Future简单明了)不建议使用。

相关文章
|
1月前
|
Java 大数据 Go
从混沌到秩序:Java共享内存模型如何通过显式约束驯服并发?
并发编程旨在混乱中建立秩序。本文对比Java共享内存模型与Golang消息传递模型,剖析显式同步与隐式因果的哲学差异,揭示happens-before等机制如何保障内存可见性与数据一致性,展现两大范式的深层分野。(238字)
61 4
|
1月前
|
缓存 安全 Java
如何理解Java中的并发?
Java并发指多任务交替执行,提升资源利用率与响应速度。通过线程实现,涉及线程安全、可见性、原子性等问题,需用synchronized、volatile、线程池及并发工具类解决,是高并发系统开发的关键基础。(238字)
194 4
|
1月前
|
设计模式 缓存 安全
【JUC】(6)带你了解共享模型之 享元和不可变 模型并初步带你了解并发工具 线程池Pool,文章内还有饥饿问题、设计模式之工作线程的解决于实现
JUC专栏第六篇,本文带你了解两个共享模型:享元和不可变 模型,并初步带你了解并发工具 线程池Pool,文章中还有解决饥饿问题、设计模式之工作线程的实现
142 2
|
1月前
|
JSON 网络协议 安全
【Java】(10)进程与线程的关系、Tread类;讲解基本线程安全、网络编程内容;JSON序列化与反序列化
几乎所有的操作系统都支持进程的概念,进程是处于运行过程中的程序,并且具有一定的独立功能,进程是系统进行资源分配和调度的一个独立单位一般而言,进程包含如下三个特征。独立性动态性并发性。
135 1
|
1月前
|
JSON 网络协议 安全
【Java基础】(1)进程与线程的关系、Tread类;讲解基本线程安全、网络编程内容;JSON序列化与反序列化
几乎所有的操作系统都支持进程的概念,进程是处于运行过程中的程序,并且具有一定的独立功能,进程是系统进行资源分配和调度的一个独立单位一般而言,进程包含如下三个特征。独立性动态性并发性。
156 1
|
2月前
|
数据采集 存储 弹性计算
高并发Java爬虫的瓶颈分析与动态线程优化方案
高并发Java爬虫的瓶颈分析与动态线程优化方案
Java 数据库 Spring
134 0
|
2月前
|
算法 Java
Java多线程编程:实现线程间数据共享机制
以上就是Java中几种主要处理多线程序列化资源以及协调各自独立运行但需相互配合以完成任务threads 的技术手段与策略。正确应用上述技术将大大增强你程序稳定性与效率同时也降低bug出现率因此深刻理解每项技术背后理论至关重要.
217 16
|
3月前
|
缓存 并行计算 安全
关于Java多线程详解
本文深入讲解Java多线程编程,涵盖基础概念、线程创建与管理、同步机制、并发工具类、线程池、线程安全集合、实战案例及常见问题解决方案,助你掌握高性能并发编程技巧,应对多线程开发中的挑战。
|
存储 安全 Java
解锁Java并发编程奥秘:深入剖析Synchronized关键字的同步机制与实现原理,让多线程安全如磐石般稳固!
【8月更文挑战第4天】Java并发编程中,Synchronized关键字是确保多线程环境下数据一致性与线程安全的基础机制。它可通过修饰实例方法、静态方法或代码块来控制对共享资源的独占访问。Synchronized基于Java对象头中的监视器锁实现,通过MonitorEnter/MonitorExit指令管理锁的获取与释放。示例展示了如何使用Synchronized修饰方法以实现线程间的同步,避免数据竞争。掌握其原理对编写高效安全的多线程程序极为关键。
257 1