【分布式】Zookeeper系统模型

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
注册配置 MSE Nacos/ZooKeeper,118元/月
云原生网关 MSE Higress,422元/月
简介: 前面已经讲解了Zookeeper的一些应用场景,但是并没有深入到Zookeeper内部进行分析,本篇将讲解其系统模型。

一、前言


  前面已经讲解了Zookeeper的一些应用场景,但是并没有深入到Zookeeper内部进行分析,本篇将讲解其系统模型。


二、系统模型


  

2.1 数据模型

  Zookeeper的数据节点称为ZNode,ZNode是Zookeeper中数据的最小单元,每个ZNode都可以保存数据,同时还可以挂载子节点,因此构成了一个层次化的命名空间,称为树。

25.png

  在Zookeeper中,事务是指能够改变Zookeeper服务器状态的操作,一般包括节点创建与删除,数据节点内容更新和客户端会话创建与失效,对于每个事务请求,Zookeeper都会为其分配一个全局唯一的事务ID,用ZXID表示,通常是64位的数字,每个ZXID对应一次更新操作,从这些ZXID中可以间接地识别出Zookeeper处理这些更新操作请求的全局顺序。

  

2.2 节点特性

  在Zookeeper中,每个数据节点都是由生命周期的,类型不同则会不同的生命周期,节点类型可以分为持久节点(PERSISTENT)、临时节点(EPHEMERAL)、顺序节点(SEQUENTIAL)三大类,可以通过组合生成如下四种类型节点

  1. 持久节点(PERSISTENT)。节点创建后便一直存在于Zookeeper服务器上,直到有删除操作来主动清楚该节点。

  2. 持久顺序节点(PERSISTENT_SEQUENTIAL)。相比持久节点,其新增了顺序特性,每个父节点都会为它的第一级子节点维护一份顺序,用于记录每个子节点创建的先后顺序。在创建节点时,会自动添加一个数字后缀,作为新的节点名,该数字后缀的上限是整形的最大值。

  3. 临时节点(EPEMERAL)。临时节点的生命周期与客户端会话绑定,客户端失效,节点会被自动清理。同时,Zookeeper规定不能基于临时节点来创建子节点,即临时节点只能作为叶子节点。

  4. 临时顺序节点(EPEMERAL_SEQUENTIAL)。在临时节点的基础添加了顺序特性。

  每个节点除了存储数据外,还存储了节点本身的一些状态信息,可通过get命令获取。

  

2.3 版本--保证分布式数据原子性操作

  每个数据节点都具有三种类型的版本信息,对数据节点的任何更新操作都会引起版本号的变化。

  version-- 当前数据节点数据内容的版本号

  cversion-- 当前数据子节点的版本号

  aversion-- 当前数据节点ACL变更版本号

  上述各版本号都是表示修改次数,如version为1表示对数据节点的内容变更了一次。即使前后两次变更并没有改变数据内容,version的值仍然会改变。version可以用于写入验证,类似于CAS。

  

2.4 Watcher--数据变更通知

  Zookeeper使用Watcher机制实现分布式数据的发布/订阅功能。

26.png

  Zookeeper的Watcher机制主要包括客户端线程、客户端WatcherManager、Zookeeper服务器三部分。客户端在向Zookeeper服务器注册的同时,会将Watcher对象存储在客户端的WatcherManager当中。当Zookeeper服务器触发Watcher事件后,会向客户端发送通知,客户端线程从WatcherManager中取出对应的Watcher对象来执行回调逻辑。

  

2.5 ACL--保障数据的安全

  Zookeeper内部存储了分布式系统运行时状态的元数据,这些元数据会直接影响基于Zookeeper进行构造的分布式系统的运行状态,如何保障系统中数据的安全,从而避免因误操作而带来的数据随意变更而导致的数据库异常十分重要,Zookeeper提供了一套完善的ACL权限控制机制来保障数据的安全。

  我们可以从三个方面来理解ACL机制:权限模式(Scheme)、授权对象(ID)、权限(Permission),通常使用"scheme:id:permission"来标识一个有效的ACL信息。

  权限模式用来确定权限验证过程中使用的检验策略,有如下四种模式:

  1. IP,通过IP地址粒度来进行权限控制,如"ip:192.168.0.110"表示权限控制针对该IP地址,同时IP模式可以支持按照网段方式进行配置,如"ip:192.168.0.1/24"表示针对192.168.0.*这个网段进行权限控制。

  2. Digest,使用"username:password"形式的权限标识来进行权限配置,便于区分不同应用来进行权限控制。Zookeeper会对其进行SHA-1加密和BASE64编码。

  3. World,最为开放的权限控制模式,数据节点的访问权限对所有用户开放。

  4. Super,超级用户,是一种特殊的Digest模式,超级用户可以对任意Zookeeper上的数据节点进行任何操作。

  授权对象是指权限赋予的用户或一个指定实体,如IP地址或机器等。不同的权限模式通常有不同的授权对象。

  权限是指通过权限检查可以被允许执行的操作,Zookeeper对所有数据的操作权限分为CREATE(节点创建权限)、DELETE(节点删除权限)、READ(节点读取权限)、WRITE(节点更新权限)、ADMIN(节点管理权限)


三、总结


  本篇博客介绍了Zookeeper中的系统模型,系统模型的五个部分是Zookeeper提供一系列服务的基础,之后笔者会结合源码进行相应分析。谢谢各位园友观看~  

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
目录
相关文章
|
24天前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
167 73
|
16天前
|
存储 SpringCloudAlibaba Java
【SpringCloud Alibaba系列】一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论
一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论。
【SpringCloud Alibaba系列】一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论
|
2月前
|
存储 运维 NoSQL
分布式读写锁的奥义:上古世代 ZooKeeper 的进击
本文作者将介绍女娲对社区 ZooKeeper 在分布式读写锁实践细节上的思考,希望帮助大家理解分布式读写锁背后的原理。
|
1月前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
73 4
|
2月前
|
存储 运维 负载均衡
构建高可用性GraphRAG系统:分布式部署与容错机制
【10月更文挑战第28天】作为一名数据科学家和系统架构师,我在构建和维护大规模分布式系统方面有着丰富的经验。最近,我负责了一个基于GraphRAG(Graph Retrieval-Augmented Generation)模型的项目,该模型用于构建一个高可用性的问答系统。在这个过程中,我深刻体会到分布式部署和容错机制的重要性。本文将详细介绍如何在生产环境中构建一个高可用性的GraphRAG系统,包括分布式部署方案、负载均衡、故障检测与恢复机制等方面的内容。
134 4
构建高可用性GraphRAG系统:分布式部署与容错机制
|
2月前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
2月前
|
机器学习/深度学习 人工智能 分布式计算
【AI系统】分布式通信与 NVLink
进入大模型时代后,AI的核心转向大模型发展,训练这类模型需克服大量GPU资源及长时间的需求。面对单个GPU内存限制,跨多个GPU的分布式训练成为必要,这涉及到分布式通信和NVLink技术的应用。分布式通信允许多个节点协作完成任务,而NVLink则是一种高速、低延迟的通信技术,用于连接GPU或GPU与其它设备,以实现高性能计算。随着大模型的参数、数据规模扩大及算力需求增长,分布式并行策略,如数据并行和模型并行,变得至关重要。这些策略通过将模型或数据分割在多个GPU上处理,提高了训练效率。此外,NVLink和NVSwitch技术的持续演进,为GPU间的高效通信提供了更强的支持,推动了大模型训练的快
48 0
|
2月前
|
存储 分布式计算 负载均衡
分布式计算模型和集群计算模型的区别
【10月更文挑战第18天】分布式计算模型和集群计算模型各有特点和优势,在实际应用中需要根据具体的需求和条件选择合适的计算架构模式,以达到最佳的计算效果和性能。
89 2
|
3月前
|
消息中间件 中间件 数据库
NServiceBus:打造企业级服务总线的利器——深度解析这一面向消息中间件如何革新分布式应用开发与提升系统可靠性
【10月更文挑战第9天】NServiceBus 是一个面向消息的中间件,专为构建分布式应用程序设计,特别适用于企业级服务总线(ESB)。它通过消息队列实现服务间的解耦,提高系统的可扩展性和容错性。在 .NET 生态中,NServiceBus 提供了强大的功能,支持多种传输方式如 RabbitMQ 和 Azure Service Bus。通过异步消息传递模式,各组件可以独立运作,即使某部分出现故障也不会影响整体系统。 示例代码展示了如何使用 NServiceBus 发送和接收消息,简化了系统的设计和维护。
76 3
|
3月前
|
分布式计算 NoSQL Java
Hadoop-32 ZooKeeper 分布式锁问题 分布式锁Java实现 附带案例和实现思路代码
Hadoop-32 ZooKeeper 分布式锁问题 分布式锁Java实现 附带案例和实现思路代码
65 2