强如 Disruptor 也发生内存溢出?(下)

简介: OutOfMemoryError 问题相信很多朋友都遇到过,相对于常见的业务异常(数组越界、空指针等)来说这类问题是很难定位和解决的。 本文以最近碰到的一次线上内存溢出的定位、解决问题的方式展开;希望能对碰到类似问题的同学带来思路和帮助。 主要从表现-->排查-->定位-->解决 四个步骤来分析和解决问题。

结果发现 com.lmax.disruptor.RingBuffer 类型的对象占用了将近 50% 的内存。

看到这个包自然就想到了 Disruptor 环形队列。


再次 review 代码发现:从 Kafka 里取出的 700 条数据是直接往 Disruptor 里丢的。

这里也就能说明为什么第一次模拟数据没复现问题了。


模拟的时候是一个对象放进队列里,而生产的情况是 700 条数据放进队列里。这个数据量是 700 倍的差距。


而 Disruptor 作为一个环形队列,再对象没有被覆盖之前是一直存在的。


我也做了一个实验,证明确实如此。



我设置队列大小为 8 ,从 0~9 往里面写 10 条数据,当写到 8 的时候就会把之前 0 的位置覆盖掉,后面的以此类推(类似于 HashMap 的取模定位)。


所以在生产上假设我们的队列大小是 1024,那么随着系统的运行最终肯定会导致 1024 个位置上装满了对象,而且每个位置是 700 个!


于是查看了生产上 Disruptor 的 RingBuffer 配置,结果是:1024*1024


这个数量级就非常吓人了。


为了验证是否是这个问题,我在本地将该值换为 2 ,一个最小值试试。


同样的 128M 内存,也是通过 Kafka 一直源源不断的取出数据。通过监控如下:



跑了 20 几分钟系统一切正常,每当一次 GC 都能回收大部分内存,最终呈现锯齿状。

这样问题就找到了,不过生产上这个值具体设置多少还得根据业务情况测试才能知道,但原有的 1024*1024 是绝对不能再使用了。


总结


虽然到了最后也就改了一行代码(还没改,直接修改配置),但这排查过程我觉得是有意义的。


也会让大部分觉得 JVM 这样的黑盒难以下手的同学有一个直观的感受。


同时也得感叹 Disruptor 东西虽好,也不能乱用哦!


相关文章
|
消息中间件 运维 监控
强如 Disruptor 也发生内存溢出?(上)
OutOfMemoryError 问题相信很多朋友都遇到过,相对于常见的业务异常(数组越界、空指针等)来说这类问题是很难定位和解决的。 本文以最近碰到的一次线上内存溢出的定位、解决问题的方式展开;希望能对碰到类似问题的同学带来思路和帮助。 主要从表现-->排查-->定位-->解决 四个步骤来分析和解决问题。
|
Java
Disruptor 全解析(7):解密内存屏障(Memory Barrier)
原文地址:http://mechanitis.blogspot.com/2011/08/dissecting-disruptor-why-its-so-fast.html​​, 作者是 Trisha Gee, LMAX 公司的一位女工程师。
2538 0
|
3月前
|
存储 编译器 C语言
【C语言篇】数据在内存中的存储(超详细)
浮点数就采⽤下⾯的规则表⽰,即指数E的真实值加上127(或1023),再将有效数字M去掉整数部分的1。
360 0
|
20天前
|
存储 C语言
数据在内存中的存储方式
本文介绍了计算机中整数和浮点数的存储方式,包括整数的原码、反码、补码,以及浮点数的IEEE754标准存储格式。同时,探讨了大小端字节序的概念及其判断方法,通过实例代码展示了这些概念的实际应用。
41 1
|
24天前
|
存储
共用体在内存中如何存储数据
共用体(Union)在内存中为所有成员分配同一段内存空间,大小等于最大成员所需的空间。这意味着所有成员共享同一块内存,但同一时间只能存储其中一个成员的数据,无法同时保存多个成员的值。
|
28天前
|
存储 弹性计算 算法
前端大模型应用笔记(四):如何在资源受限例如1核和1G内存的端侧或ECS上运行一个合适的向量存储库及如何优化
本文探讨了在资源受限的嵌入式设备(如1核处理器和1GB内存)上实现高效向量存储和检索的方法,旨在支持端侧大模型应用。文章分析了Annoy、HNSWLib、NMSLib、FLANN、VP-Trees和Lshbox等向量存储库的特点与适用场景,推荐Annoy作为多数情况下的首选方案,并提出了数据预处理、索引优化、查询优化等策略以提升性能。通过这些方法,即使在资源受限的环境中也能实现高效的向量检索。
|
1月前
|
存储 编译器
数据在内存中的存储
数据在内存中的存储
37 4