秒杀架构实践(上)

简介: 之前在 Java-Interview 中提到过秒杀架构的设计,这次基于其中的理论简单实现了一下。本次采用循序渐进的方式逐步提高性能达到并发秒杀的效果

前言


之前在 Java-Interview 中提到过秒杀架构的设计,这次基于其中的理论简单实现了一下。


本次采用循序渐进的方式逐步提高性能达到并发秒杀的效果


本文所有涉及的代码:




最终架构图:



先简单根据这个图谈下请求的流转,因为后面不管怎么改进这个都是没有变的。


  • 前端请求进入 web 层,对应的代码就是 controller


  • 之后将真正的库存校验、下单等请求发往 Service 层(其中 RPC 调用依然采用的 dubbo,只是更新为最新版本,本次不会过多讨论 dubbo 相关的细节,有兴趣的可以查看 基于dubbo的分布式架构)。


  • Service 层再对数据进行落地,下单完成。


无限制


其实抛开秒杀这个场景来说正常的一个下单流程可以简单分为以下几步:


  • 校验库存


  • 扣库存


  • 创建订单


  • 支付


基于上文的架构所以我们有了以下实现:


先看看实际项目的结构:



还是和以前一样:


  • 提供出一个 API 用于 Service 层实现,以及 web 层消费。


  • web 层简单来说就是一个 SpringMVC


  • Service 层则是真正的数据落地。


  • SSM-SECONDS-KILL-ORDER-CONSUMER 则是后文会提到的 Kafka 消费。


数据库也是只有简单的两张表模拟下单:


CREATE TABLE `stock` (
  `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
  `name` varchar(50) NOT NULL DEFAULT '' COMMENT '名称',
  `count` int(11) NOT NULL COMMENT '库存',
  `sale` int(11) NOT NULL COMMENT '已售',
  `version` int(11) NOT NULL COMMENT '乐观锁,版本号',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8;
CREATE TABLE `stock_order` (
  `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
  `sid` int(11) NOT NULL COMMENT '库存ID',
  `name` varchar(30) NOT NULL DEFAULT '' COMMENT '商品名称',
  `create_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '创建时间',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=55 DEFAULT CHARSET=utf8;


web 层 controller 实现:


@Autowired
    private StockService stockService;
    @Autowired
    private OrderService orderService;
    @RequestMapping("/createWrongOrder/{sid}")
    @ResponseBody
    public String createWrongOrder(@PathVariable int sid) {
        logger.info("sid=[{}]", sid);
        int id = 0;
        try {
            id = orderService.createWrongOrder(sid);
        } catch (Exception e) {
            logger.error("Exception",e);
        }
        return String.valueOf(id);
    }


其中 web 作为一个消费者调用看 OrderService 提供出来的 dubbo 服务。


Service 层,OrderService 实现:


首先是对 API 的实现(会在 API 提供出接口):


@Service
public class OrderServiceImpl implements OrderService {
    @Resource(name = "DBOrderService")
    private com.crossoverJie.seconds.kill.service.OrderService orderService ;
    @Override
    public int createWrongOrder(int sid) throws Exception {
        return orderService.createWrongOrder(sid);
    }
}


这里只是简单调用了 DBOrderService 中的实现,DBOrderService 才是真正的数据落地,也就是写数据库了。


DBOrderService 实现:


Transactional(rollbackFor = Exception.class)
@Service(value = "DBOrderService")
public class OrderServiceImpl implements OrderService {
    @Resource(name = "DBStockService")
    private com.crossoverJie.seconds.kill.service.StockService stockService;
    @Autowired
    private StockOrderMapper orderMapper;
    @Override
    public int createWrongOrder(int sid) throws Exception{
        //校验库存
        Stock stock = checkStock(sid);
        //扣库存
        saleStock(stock);
        //创建订单
        int id = createOrder(stock);
        return id;
    }
    private Stock checkStock(int sid) {
        Stock stock = stockService.getStockById(sid);
        if (stock.getSale().equals(stock.getCount())) {
            throw new RuntimeException("库存不足");
        }
        return stock;
    }
    private int saleStock(Stock stock) {
        stock.setSale(stock.getSale() + 1);
        return stockService.updateStockById(stock);
    }
    private int createOrder(Stock stock) {
        StockOrder order = new StockOrder();
        order.setSid(stock.getId());
        order.setName(stock.getName());
        int id = orderMapper.insertSelective(order);
        return id;
    }        
}


预先初始化了 10 条库存。


手动调用下 createWrongOrder/1 接口发现:


库存表:



订单表:



一切看起来都没有问题,数据也正常。


但是当用 JMeter 并发测试时:



测试配置是:300个线程并发,测试两轮来看看数据库中的结果:




请求都响应成功,库存确实也扣完了,但是订单却生成了 124 条记录。


这显然是典型的超卖现象。


其实现在再去手动调用接口会返回库存不足,但为时晚矣。



相关文章
|
12天前
|
API 持续交付 开发者
后端开发中的微服务架构实践与挑战
在数字化时代,后端服务的构建和管理变得日益复杂。本文将深入探讨微服务架构在后端开发中的应用,分析其在提高系统可扩展性、灵活性和可维护性方面的优势,同时讨论实施微服务时面临的挑战,如服务拆分、数据一致性和部署复杂性等。通过实际案例分析,本文旨在为开发者提供微服务架构的实用见解和解决策略。
|
13天前
|
弹性计算 Kubernetes Cloud Native
云原生架构下的微服务设计原则与实践####
本文深入探讨了在云原生环境中,微服务架构的设计原则、关键技术及实践案例。通过剖析传统单体架构面临的挑战,引出微服务作为解决方案的优势,并详细阐述了微服务设计的几大核心原则:单一职责、独立部署、弹性伸缩和服务自治。文章还介绍了容器化技术、Kubernetes等云原生工具如何助力微服务的高效实施,并通过一个实际项目案例,展示了从服务拆分到持续集成/持续部署(CI/CD)流程的完整实现路径,为读者提供了宝贵的实践经验和启发。 ####
|
1天前
|
Cloud Native 安全 API
云原生架构下的微服务治理策略与实践####
—透过云原生的棱镜,探索微服务架构下的挑战与应对之道 本文旨在探讨云原生环境下,微服务架构所面临的关键挑战及有效的治理策略。随着云计算技术的深入发展,越来越多的企业选择采用云原生架构来构建和部署其应用程序,以期获得更高的灵活性、可扩展性和效率。然而,微服务架构的复杂性也带来了服务发现、负载均衡、故障恢复等一系列治理难题。本文将深入分析这些问题,并提出一套基于云原生技术栈的微服务治理框架,包括服务网格的应用、API网关的集成、以及动态配置管理等关键方面,旨在为企业实现高效、稳定的微服务架构提供参考路径。 ####
15 5
|
5天前
|
监控 Go API
Go语言在微服务架构中的应用实践
在微服务架构的浪潮中,Go语言以其简洁、高效和并发处理能力脱颖而出,成为构建微服务的理想选择。本文将探讨Go语言在微服务架构中的应用实践,包括Go语言的特性如何适应微服务架构的需求,以及在实际开发中如何利用Go语言的特性来提高服务的性能和可维护性。我们将通过一个具体的案例分析,展示Go语言在微服务开发中的优势,并讨论在实际应用中可能遇到的挑战和解决方案。
|
3天前
|
负载均衡 监控 Cloud Native
云原生架构下的微服务治理策略与实践####
在数字化转型浪潮中,企业纷纷拥抱云计算,而云原生架构作为其核心技术支撑,正引领着一场深刻的技术变革。本文聚焦于云原生环境下微服务架构的治理策略与实践,探讨如何通过精细化的服务管理、动态的流量调度、高效的故障恢复机制以及持续的监控优化,构建弹性、可靠且易于维护的分布式系统。我们将深入剖析微服务治理的核心要素,结合具体案例,揭示其在提升系统稳定性、扩展性和敏捷性方面的关键作用,为读者提供一套切实可行的云原生微服务治理指南。 ####
|
3天前
|
消息中间件 缓存 Cloud Native
云原生架构下的性能优化实践与挑战####
随着企业数字化转型的加速,云原生架构以其高度解耦、弹性伸缩和快速迭代的特性,成为现代软件开发的首选模式。本文深入探讨了云原生环境下性能优化的关键策略与面临的主要挑战,通过案例分析,揭示了如何有效利用容器化、微服务、动态调度等技术手段提升应用性能,同时指出了在复杂云环境中确保系统稳定性和高效性的难题,为开发者和架构师提供了实战指南。 ####
10 3
|
3天前
|
运维 Kubernetes Cloud Native
深入理解云原生架构:从理论到实践
【10月更文挑战第38天】本文将引导读者深入探索云原生技术的核心概念,以及如何将这些概念应用于实际的软件开发和运维中。我们将从云原生的基本定义出发,逐步展开其背后的设计哲学、关键技术组件,并以一个具体的代码示例来演示云原生应用的构建过程。无论你是云原生技术的初学者,还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和实操指南。
|
3天前
|
Kubernetes Cloud Native 持续交付
云原生技术在现代应用架构中的实践与思考
【10月更文挑战第38天】随着云计算的不断成熟和演进,云原生(Cloud-Native)已成为推动企业数字化转型的重要力量。本文从云原生的基本概念出发,深入探讨了其在现代应用架构中的实际应用,并结合代码示例,展示了云原生技术如何优化资源管理、提升系统弹性和加速开发流程。通过分析云原生的优势与面临的挑战,本文旨在为读者提供一份云原生转型的指南和启示。
11 3
|
2天前
|
运维 Kubernetes Cloud Native
云原生技术在现代应用架构中的实践与挑战####
本文深入探讨了云原生技术的核心概念、关键技术组件及其在实际项目中的应用案例,分析了企业在向云原生转型过程中面临的主要挑战及应对策略。不同于传统摘要的概述性质,本摘要强调通过具体实例揭示云原生技术如何促进应用的灵活性、可扩展性和高效运维,同时指出实践中需注意的技术债务、安全合规等问题,为读者提供一幅云原生技术实践的全景视图。 ####
|
6天前
|
监控 API 持续交付
后端开发中的微服务架构实践与挑战####
本文深入探讨了微服务架构在后端开发中的应用,分析了其优势、面临的挑战以及最佳实践策略。不同于传统的单体应用,微服务通过细粒度的服务划分促进了系统的可维护性、可扩展性和敏捷性。文章首先概述了微服务的核心概念及其与传统架构的区别,随后详细阐述了构建微服务时需考虑的关键技术要素,如服务发现、API网关、容器化部署及持续集成/持续部署(CI/CD)流程。此外,还讨论了微服务实施过程中常见的问题,如服务间通信复杂度增加、数据一致性保障等,并提供了相应的解决方案和优化建议。总之,本文旨在为开发者提供一份关于如何在现代后端系统中有效采用和优化微服务架构的实用指南。 ####