秒杀架构实践(上)

简介: 之前在 Java-Interview 中提到过秒杀架构的设计,这次基于其中的理论简单实现了一下。本次采用循序渐进的方式逐步提高性能达到并发秒杀的效果

前言


之前在 Java-Interview 中提到过秒杀架构的设计,这次基于其中的理论简单实现了一下。


本次采用循序渐进的方式逐步提高性能达到并发秒杀的效果


本文所有涉及的代码:




最终架构图:



先简单根据这个图谈下请求的流转,因为后面不管怎么改进这个都是没有变的。


  • 前端请求进入 web 层,对应的代码就是 controller


  • 之后将真正的库存校验、下单等请求发往 Service 层(其中 RPC 调用依然采用的 dubbo,只是更新为最新版本,本次不会过多讨论 dubbo 相关的细节,有兴趣的可以查看 基于dubbo的分布式架构)。


  • Service 层再对数据进行落地,下单完成。


无限制


其实抛开秒杀这个场景来说正常的一个下单流程可以简单分为以下几步:


  • 校验库存


  • 扣库存


  • 创建订单


  • 支付


基于上文的架构所以我们有了以下实现:


先看看实际项目的结构:



还是和以前一样:


  • 提供出一个 API 用于 Service 层实现,以及 web 层消费。


  • web 层简单来说就是一个 SpringMVC


  • Service 层则是真正的数据落地。


  • SSM-SECONDS-KILL-ORDER-CONSUMER 则是后文会提到的 Kafka 消费。


数据库也是只有简单的两张表模拟下单:


CREATE TABLE `stock` (
  `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
  `name` varchar(50) NOT NULL DEFAULT '' COMMENT '名称',
  `count` int(11) NOT NULL COMMENT '库存',
  `sale` int(11) NOT NULL COMMENT '已售',
  `version` int(11) NOT NULL COMMENT '乐观锁,版本号',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8;
CREATE TABLE `stock_order` (
  `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
  `sid` int(11) NOT NULL COMMENT '库存ID',
  `name` varchar(30) NOT NULL DEFAULT '' COMMENT '商品名称',
  `create_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '创建时间',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=55 DEFAULT CHARSET=utf8;


web 层 controller 实现:


@Autowired
    private StockService stockService;
    @Autowired
    private OrderService orderService;
    @RequestMapping("/createWrongOrder/{sid}")
    @ResponseBody
    public String createWrongOrder(@PathVariable int sid) {
        logger.info("sid=[{}]", sid);
        int id = 0;
        try {
            id = orderService.createWrongOrder(sid);
        } catch (Exception e) {
            logger.error("Exception",e);
        }
        return String.valueOf(id);
    }


其中 web 作为一个消费者调用看 OrderService 提供出来的 dubbo 服务。


Service 层,OrderService 实现:


首先是对 API 的实现(会在 API 提供出接口):


@Service
public class OrderServiceImpl implements OrderService {
    @Resource(name = "DBOrderService")
    private com.crossoverJie.seconds.kill.service.OrderService orderService ;
    @Override
    public int createWrongOrder(int sid) throws Exception {
        return orderService.createWrongOrder(sid);
    }
}


这里只是简单调用了 DBOrderService 中的实现,DBOrderService 才是真正的数据落地,也就是写数据库了。


DBOrderService 实现:


Transactional(rollbackFor = Exception.class)
@Service(value = "DBOrderService")
public class OrderServiceImpl implements OrderService {
    @Resource(name = "DBStockService")
    private com.crossoverJie.seconds.kill.service.StockService stockService;
    @Autowired
    private StockOrderMapper orderMapper;
    @Override
    public int createWrongOrder(int sid) throws Exception{
        //校验库存
        Stock stock = checkStock(sid);
        //扣库存
        saleStock(stock);
        //创建订单
        int id = createOrder(stock);
        return id;
    }
    private Stock checkStock(int sid) {
        Stock stock = stockService.getStockById(sid);
        if (stock.getSale().equals(stock.getCount())) {
            throw new RuntimeException("库存不足");
        }
        return stock;
    }
    private int saleStock(Stock stock) {
        stock.setSale(stock.getSale() + 1);
        return stockService.updateStockById(stock);
    }
    private int createOrder(Stock stock) {
        StockOrder order = new StockOrder();
        order.setSid(stock.getId());
        order.setName(stock.getName());
        int id = orderMapper.insertSelective(order);
        return id;
    }        
}


预先初始化了 10 条库存。


手动调用下 createWrongOrder/1 接口发现:


库存表:



订单表:



一切看起来都没有问题,数据也正常。


但是当用 JMeter 并发测试时:



测试配置是:300个线程并发,测试两轮来看看数据库中的结果:




请求都响应成功,库存确实也扣完了,但是订单却生成了 124 条记录。


这显然是典型的超卖现象。


其实现在再去手动调用接口会返回库存不足,但为时晚矣。



相关文章
|
21天前
|
运维 持续交付 云计算
深入解析云计算中的微服务架构:原理、优势与实践
深入解析云计算中的微服务架构:原理、优势与实践
55 1
|
1天前
|
弹性计算 Java 关系型数据库
Web应用上云经典架构实践教学
Web应用上云经典架构实践教学
Web应用上云经典架构实践教学
|
21天前
|
弹性计算 持续交付 API
构建高效后端服务:微服务架构的深度解析与实践
在当今快速发展的软件行业中,构建高效、可扩展且易于维护的后端服务是每个技术团队的追求。本文将深入探讨微服务架构的核心概念、设计原则及其在实际项目中的应用,通过具体案例分析,展示如何利用微服务架构解决传统单体应用面临的挑战,提升系统的灵活性和响应速度。我们将从微服务的拆分策略、通信机制、服务发现、配置管理、以及持续集成/持续部署(CI/CD)等方面进行全面剖析,旨在为读者提供一套实用的微服务实施指南。
|
17天前
|
运维 监控 Java
后端开发中的微服务架构实践与挑战####
在数字化转型加速的今天,微服务架构凭借其高度的灵活性、可扩展性和可维护性,成为众多企业后端系统构建的首选方案。本文深入探讨了微服务架构的核心概念、实施步骤、关键技术考量以及面临的主要挑战,旨在为开发者提供一份实用的实践指南。通过案例分析,揭示微服务在实际项目中的应用效果,并针对常见问题提出解决策略,帮助读者更好地理解和应对微服务架构带来的复杂性与机遇。 ####
|
20天前
|
NoSQL Java 数据处理
基于Redis海量数据场景分布式ID架构实践
【11月更文挑战第30天】在现代分布式系统中,生成全局唯一的ID是一个常见且重要的需求。在微服务架构中,各个服务可能需要生成唯一标识符,如用户ID、订单ID等。传统的自增ID已经无法满足在集群环境下保持唯一性的要求,而分布式ID解决方案能够确保即使在多个实例间也能生成全局唯一的标识符。本文将深入探讨如何利用Redis实现分布式ID生成,并通过Java语言展示多个示例,同时分析每个实践方案的优缺点。
38 8
|
17天前
|
算法 NoSQL Java
微服务架构下的接口限流策略与实践#### 一、
本文旨在探讨微服务架构下,面对高并发请求时如何有效实施接口限流策略,以保障系统稳定性和服务质量。不同于传统的摘要概述,本文将从实际应用场景出发,深入剖析几种主流的限流算法(如令牌桶、漏桶及固定窗口计数器等),通过对比分析它们的优缺点,并结合具体案例,展示如何在Spring Cloud Gateway中集成自定义限流方案,实现动态限流规则调整,为读者提供一套可落地的实践指南。 #### 二、
41 3
|
19天前
|
负载均衡 Java 开发者
深入探索Spring Cloud与Spring Boot:构建微服务架构的实践经验
深入探索Spring Cloud与Spring Boot:构建微服务架构的实践经验
62 5
|
15天前
|
消息中间件 运维 安全
后端开发中的微服务架构实践与挑战####
在数字化转型的浪潮中,微服务架构凭借其高度的灵活性和可扩展性,成为众多企业重构后端系统的首选方案。本文将深入探讨微服务的核心概念、设计原则、关键技术选型及在实际项目实施过程中面临的挑战与解决方案,旨在为开发者提供一套实用的微服务架构落地指南。我们将从理论框架出发,逐步深入至技术细节,最终通过案例分析,揭示如何在复杂业务场景下有效应用微服务,提升系统的整体性能与稳定性。 ####
31 1
|
17天前
|
监控 安全 持续交付
构建高效微服务架构:策略与实践####
在数字化转型的浪潮中,微服务架构凭借其高度解耦、灵活扩展和易于维护的特点,成为现代企业应用开发的首选。本文深入探讨了构建高效微服务架构的关键策略与实战经验,从服务拆分的艺术到通信机制的选择,再到容器化部署与持续集成/持续部署(CI/CD)的实践,旨在为开发者提供一套全面的微服务设计与实现指南。通过具体案例分析,揭示如何避免常见陷阱,优化系统性能,确保系统的高可用性与可扩展性,助力企业在复杂多变的市场环境中保持竞争力。 ####
35 2
|
21天前
|
监控 Serverless 云计算
探索Serverless架构:开发实践与优化策略
本文深入探讨了Serverless架构的核心概念、开发实践及优化策略。Serverless让开发者无需管理服务器即可运行代码,具有成本效益、高可扩展性和提升开发效率等优势。文章还详细介绍了函数设计、安全性、监控及性能和成本优化的最佳实践。
下一篇
DataWorks