题目描述
这是 LeetCode 上的 27. 移除元素 。
Tag : 「数组」、「双指针」、「数组移除元素问题」
给你一个数组 nums 和一个值 val,你需要「原地」移除所有数值等于 val 的元素,并返回移除后数组的新长度。
不要使用额外的数组空间,你必须仅使用 O(1)O(1) 额外空间并「原地」修改输入数组。
元素的顺序可以改变。
你不需要考虑数组中超出新长度后面的元素。
说明:
为什么返回数值是整数,但输出的答案是数组呢?
请注意,输入数组是以「引用」方式传递的,这意味着在函数里修改输入数组对于调用者是可见的。
你可以想象内部操作如下:
// nums 是以“引用”方式传递的。也就是说,不对实参作任何拷贝 int len = removeElement(nums, val); // 在函数里修改输入数组对于调用者是可见的。 // 根据你的函数返回的长度, 它会打印出数组中 该长度范围内 的所有元素。 for (int i = 0; i < len; i++) { print(nums[i]); } 复制代码
示例 1:
输入:nums = [3,2,2,3], val = 3 输出:2, nums = [2,2] 解释:函数应该返回新的长度 2, 并且 nums 中的前两个元素均为 2。你不需要考虑数组中超出新长度后面的元素。例如,函数返回的新长度为 2 ,而 nums = [2,2,3,3] 或 nums = [2,2,0,0],也会被视作正确答案。 复制代码
示例 2:
输入:nums = [0,1,2,2,3,0,4,2], val = 2 输出:5, nums = [0,1,4,0,3] 解释:函数应该返回新的长度 5, 并且 nums 中的前五个元素为 0, 1, 3, 0, 4。注意这五个元素可为任意顺序。你不需要考虑数组中超出新长度后面的元素。 复制代码
提示:
- 0 <= nums.length <= 100
- 0 <= nums[i] <= 50
- 0 <= val <= 100
双指针解法
本解法的思路与 【题解】26. 删除排序数组中的重复项 中的「双指针解法」类似。
根据题意,我们可以将数组分成「前后」两段:
- 前半段是有效部分,存储的是不等于
val
的元素。 - 后半段是无效部分,存储的是等于
val
的元素。
最终答案返回有效部分的结尾下标。
代码:
class Solution { public int removeElement(int[] nums, int val) { int j = nums.length - 1; for (int i = 0; i <= j; i++) { if (nums[i] == val) { swap(nums, i--, j--); } } return j + 1; } void swap(int[] nums, int i, int j) { int tmp = nums[i]; nums[i] = nums[j]; nums[j] = tmp; } } 复制代码
- 时间复杂度:O(n)O(n)
- 空间复杂度:O(1)O(1)
通用解法
本解法的思路与 【题解】26. 删除排序数组中的重复项 中的「通用解法」类似。
先设定变量 idx
,指向待插入位置。idx
初始值为 0
然后从题目的「要求/保留逻辑」出发,来决定当遍历到任意元素 x
时,应该做何种决策:
- 如果当前元素
x
与移除元素val
相同,那么跳过该元素。 - 如果当前元素
x
与移除元素val
不同,那么我们将其放到下标idx
的位置,并让idx
自增右移。
最终得到的 idx
即是答案。
代码:
class Solution { public int removeElement(int[] nums, int val) { int idx = 0; for (int x : nums) { if (x != val) nums[idx++] = x; } return idx; } } 复制代码
- 时间复杂度:O(n)O(n)
- 空间复杂度:O(1)O(1)
总结
对于诸如「相同元素最多保留 k
位元素」或者「移除特定元素」的问题,更好的做法是从题目本身性质出发,利用题目给定的要求提炼出具体的「保留逻辑」,将「保留逻辑」应用到我们的遍历到的每一个位置。
最后
这是我们「刷穿 LeetCode」系列文章的第 No.27
篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先将所有不带锁的题目刷完。
在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。
为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:github.com/SharingSour…
在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。